某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元) |
x |
销售量y(件) |
|
销售玩具获得利润w(元) |
|
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
解:(1)
销售单价(元) |
x |
销售量y(件) |
1000﹣10x |
销售玩具获得利润w(元) |
﹣10x2+1300x﹣30000 |
(2)﹣10x2+1300x﹣30000=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润。
(3)根据题意得,解之得:44≤x≤46 。
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大。
∴当x=46时,W最大值=8640(元)。
答:商场销售该品牌玩具获得的最大利润为8640元。
【解析】
试题分析:(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣30000。
(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
销售单价(元) | x |
销售量y(件) | 1000-10x 1000-10x |
销售玩具获得利润w(元) | -10x2+1300x-30000 -10x2+1300x-30000 |
查看答案和解析>>
科目:初中数学 来源: 题型:
销售单价(元) | x |
销售量y(件) | 1000-10x 1000-10x |
销售玩具获得利润w(元) | -10x2+1300x-30000 -10x2+1300x-30000 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com