【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)、求证:DE⊥AG;
(2)、如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
【答案】(1)、证明过程见解析;(2)、①、α=30°或150°;②、最大值为4+,α=315°.
【解析】
试题分析:(1)、延长ED交AG于点H,根据正方形的性质得出△AOG和△DOE全等,从而得出∠AGO=∠DEO,
根据∠AGO+∠GAO=90°得出∠GAO+∠DEO=90°,即得出垂直;(2)、①、根据∠OAG′=90°和∠OAG′=90°两种情况分别进行计算;②当α=315°时, A、O、F′在一条直线上时,AF′的长最大,最大值为4+.
试题解析:(1)、延长ED交AG于点H, ∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD
在△AOG和△DOE中 ∴△AOG≌△DOE ∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°即DE⊥AG
(2)、①在旋转过程中,∠OAG′成为直角有两种情况:
(I):α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;
(II):α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,∴α=180°﹣30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②当α=315°时, A、O、F′在一条直线上时,AF′的长最大,最大值为4+,α=315°.
科目:初中数学 来源: 题型:
【题目】七年级一班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①直径是弦;②经过三点一定可以作圆;③三角形的外心到三角形各顶点的距离相等;④长度相等的弧是等弧;⑤平分弦的直径垂直于弦.其中正确的是(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,已知函数y= (x>0)图像上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0) .动点M是y轴正半轴上点B上方的点.动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时, 若四边形BQNC是菱形,面积为2,求此时P点的坐标.
(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边
形,如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B(3,3)在双曲线y= (x>0)上,点D在双曲线y= -(x<0)上,点A和点C分别在x轴、y轴的正半轴上,且点A、B、C、D构成的四边形为正方形.
(1)求k的值;(2)求点A的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表所列为某商店薄利多销的情况,某商品原价为560元,随着不同幅度的降价,日销量(单位为件)发生相应的变化.如果售价为500元时,日销量为( )件.
降价(元) | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
日销量(件) | 780 | 810 | 840 | 870 | 900 | 930 | 960 |
A.1200
B.750
C.1110
D.1140
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.
(1)求证: DE=AD+BE.
(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE又怎样的关系?请直接写出你的结论,不必说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com