精英家教网 > 初中数学 > 题目详情
3.在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.
(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;
(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.

分析 (1)由概率公式容易得出结果;
(2)画出树状图,所有等可能结果共有12种,其中能构成等腰三角形有8种,即可求出概率.

解答 解:(1)P(取出的小球上的数字为5)=$\frac{1}{4}$;
(2)画出树状图如下
所有等可能结果共有12种,其中能构成等腰三角形有8种,
∴P(能构成等腰三角形)=$\frac{8}{12}$=$\frac{2}{3}$.

点评 本题考查的是用列表法或画树状图法求概率、概率公式、等腰三角形的判定与性质.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.已知x=1是方程x2-3ax+a2=0的一个根,求代数式3a2-9a+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,已知一次函数y=kx+3和y=-x+b的图象交于点P(2,4),则关于x的方程kx+3=-x+b的解是x=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)如图1,AC=DC,BC=EC,∠ACD=∠BCE,求证:∠A=∠D.
(2)如图2,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,求∠ADP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.
(1)①当PC∥QB时,OQ=2cm;
②当PC⊥QB时,求OQ的长.
(2)当折叠后重叠部分为等腰三角形时,求OQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线与直线y=2x-8交于A,B两点,有一直尺平行于y轴移动,直尺两长边所在直线AB和抛物线截得两线段NM、PQ,点P、M在直线AB上且PM=$\sqrt{5}$,设M点的横坐标为m(0<m<4).
(1)求抛物线的函数解析式.
(2)当m为何值时,以M、N、P、Q为顶点的四边形是平行四边形?请说明理由;
(3)在抛物线上的对称轴上是否存在点D使得点D到直线AB和到x轴的距离相等?若存在,请直接写出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知一次函数y=-x+3的图象与x轴交于点A、与y轴交于点B,BC∥x轴,且∠ACB的正切值为3.
(1)求点A、B、C的坐标;
(2)如果二次函数图象经过A、B、C三点,试求该抛物线的解析式及顶点M的坐标;
(3)如果在y轴上有一点D,使得△ABD与△ABC相似,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.善于思考的小明在解方程组$\left\{\begin{array}{l}{2x+5y=3①}\\{4x+11y=5②}\end{array}\right.$时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③
    把方程①代入③得:2×3+y=5,∴y=-1
    把y=-1代入①得x=4,∴方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$.
请你解决以下问题:
(1)模仿小明的“整体代换”法解方程组$\left\{\begin{array}{l}{2x-y=1①}\\{6x-2y=6②}\end{array}\right.$;
(2)已知x,y满足方程组$\left\{\begin{array}{l}{2{x}^{2}-xy+18{y}^{2}=33①}\\{3{x}^{2}+2xy+27{y}^{2}=60②}\end{array}\right.$
①求x2+9y2的值;
②求x+3y的值.[参考公式(a+b)2=a2+2ab+b2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)解方程;$\frac{3}{2x-2}$+$\frac{1}{1-x}$=3
(2)先化简:($\frac{a+3}{a-2}+\frac{1}{2-a}$)÷$\frac{{a}^{2}-4}{3}$请在2和3中选择一个合适的数代入求值.

查看答案和解析>>

同步练习册答案