精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.
请将以下推理过程补充完整:
证明:∵DG⊥BC,AC⊥BC,( 已知 )
∴∠DGB=∠ACB=90°,( 垂直的定义 )
∴DG∥AC,(________)
∴∠2=________.(________)
∵∠1=∠2,( 已知 )
∴∠1=________,( 等量代换 )
∴EF∥CD.(________)

同位角相等,两直线平行    ∠∠DCA    两直线平行,内错角相等    ∠DCA    同位角相等,两直线平行
分析:首先证明∠2=∠DCA,然后根据∠1=∠2,可得∠DCA=∠1,再根据同位角相等,两直线平行可判定出EF∥DC.
解答:证明:∵DG⊥BC,AC⊥BC,( 已知 )
∴∠DGB=∠ACB=90°,( 垂直的定义 )
∴DG∥AC,( 同位角相等,两直线平行)
∴∠2=∠DCA.( 两直线平行,内错角相等)
∵∠1=∠2,( 已知 )
∴∠1=∠DCA,( 等量代换 )
∴EF∥CD.( 同位角相等,两直线平行)
点评:此题主要考查了平行线的判定与性质定理,关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案