精英家教网 > 初中数学 > 题目详情
(2002•荆门)如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相同速度作直线运动.已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线AC相交于点D.
(1)设AP的长为x,△PCQ的面积为S.求出S关于x的函数关系式;
(2)当AP的长为何值时,S△PCQ=S△ABC
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.

【答案】分析:(1)本题要分两种情况进行讨论:
①当P在线段AB上;②当P在AB延长线上.
△PCQ都是以CQ为底,PB为高,可据此得出S、x的函数关系式.
(2)先计算出△ABC的面积,然后将其值代入(1)中得出的两个函数式中,即可得出所求的AP的长.
(3)本题要分两种情况进行计算:
①当P在线段AB上时,过P作PF∥QB交AC于F,那么不难得出△PFD≌△QCD,因此DF=CD=,而CF=AC-2AE,因此根据DE=EF+DF即可得出DE的长.
②当P在线段AB延长线上时,DE=EF-FD.
然后比较①②的DE的长是否相等即可判断出线段DE的长度是否改变.
解答:解:(1)①当点P在线段AB上时(如图1),S△PCQ=CQ•PB.
∵AP=CQ=x,PB=2-x.
∴S△PCQ=x(2-x).
即S=(2x-x2)(0<x<2);
②当点P在AB延长线上时(如图2),S△PCQ=CQ•PB.
∵AP=CQ=x,PB=x-2.
∴S△PCQ=x(x-2).
即S=(x2-2x)(x>2);

(2)S△ABC=×2×2=2.
①令(2x-x2)=2,即x2-2x+4=0,此方程无解;
②令(x2-2x)=2,即x2-2x-4=0,解得x=1±
故当AP的长为1+时,S△PCQ=S△ABC

(3)作PF∥BC交AC交延长线于F,则AP=PF=CQ.
∴△PFD≌△QCD.
∴FD=CD=
∵AP=x,
∴AE=EF=
∵AB=2,
∴AC=2
①当点P在线段AB上时,
∵CF=AC-AF=2-x,FD==-x.
∴DE=EF+DF=-x+=
②当点P在AB延长线上时,
∵CF=AF-AC=x-2.FD==x-
∴DE=EF-FD=AF-AE-DF=x-x-(x-)=
故当P、Q运动时,线段DE的长度保持不变,始终等于
点评:本题结合三角形的相关知识考查了二次函数的应用,主要考查了学生分类讨论、数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2002•荆门)如图,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到口上,经两次反射后的出射光线O'B平行于α,则角θ等于
60
60
度.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的对称》(02)(解析版) 题型:填空题

(2002•荆门)如图,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到口上,经两次反射后的出射光线O′B平行于α,则角θ等于    度.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《四边形》(02)(解析版) 题型:选择题

(2002•荆门)如图,在梯形ABCD中,AB∥CD,∠D=2∠B,AD=a,CD=b,则AB等于( )

A.a+
B.+b
C.a+b
D.a+2b

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(05)(解析版) 题型:填空题

(2002•荆门)如图,半径为5的两个等圆⊙O1与⊙O2相交于A、B,公共弦AB=8.由点O1向⊙O2作切线O1C,切点为C,则O1C的长为   

查看答案和解析>>

科目:初中数学 来源:2002年湖北省荆门市中考数学试卷(解析版) 题型:解答题

(2002•荆门)如图,在△ABE和△ACD中,给出以下四个论断:
(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.

查看答案和解析>>

同步练习册答案