【题目】有一张长方形纸片(如图①),,将纸片折叠,使落在边上,为的对应点,折痕为(如图②),再将长方形以为折痕向右折叠,若点落在的三等分点上,则的长为( )
A.8B.10C.8或10D.8或12
科目:初中数学 来源: 题型:
【题目】如图,,在射线AN上取一点B,使,过点作于点C,点D是线段AB上的一个动点,E是BC边上一点,且,设AD=x cm,BE=y cm,探究函数y随自变量x的变化而变化的规律.
(1)取指定点作图.根据下面表格预填结果,先通过作图确定AD=2cm时,点E的位置,测量BE的长度。
①根据题意,在答题卡上补全图形;
②把表格补充完整:通过取点、画图、测量,得到了与的几组对应值,如下表:
2 | 3 | ||||||
2.9 | 3.4 | 3.3 | 2.6 | 1.6 | 0 |
(说明:补全表格时相关数值保留一位小数)
③建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(2)结合画出的函数图象,解决问题:当时,的取值约为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点为直线上一点,过点作射线,使将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点按每秒的速度沿顺时针方向旋转,使落在上.在旋转的过程中,假如第秒时,、、三条射线构成的角中有两个角相等,求此时的值为多少?
(2)将图1中的三角板绕点顺时针旋转(如图2),使在的内部,请探究:与之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)
(t>0).
(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式,并写出t的取值范围.
(3)若边EF所在直线与边AC交于点Q,连结PQ,如图2,直接写出△ABC的某一顶点到P、Q两点距离相等时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
A. 4 B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.
(1)求证:△BDE≌△BAC;
(2)求证:四边形ADEG是平行四边形.
(3)直接回答下面两个问题,不必证明:
①当△ABC满足条件_____________________时,四边形ADEG是矩形.
②当△ABC满足条件_____________________时,四边形ADEG是正方形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y=ax2+bx+c (a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,当x<﹣1时,y随x增大而减小,下列结论:①abc>0;②a+b<0;③若点A(﹣3,y1),B(3,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤c≤﹣1时,则b2﹣4ac≤4a.其中结论正确的有( )个
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com