9£®Èçͼ£¬LA£¬LB·Ö±ð±íʾA²½ÐÐÓëBÆï³µÔÚͬһ·ÉÏÐÐÊ»µÄ·³ÌS£¨Ç§Ã×£©Óëʱ¼ät£¨Ð¡Ê±£©µÄ¹Øϵ£®¸ù¾ÝͼÏ󣬻شðÏÂÁÐÎÊÌ⣺
£¨1£©B³ö·¢Ê±ÓëAÏà¾à10ǧÃ×£®
£¨2£©×ßÁËÒ»¶Î·ºó£¬×ÔÐгµ·¢Éú¹ÊÕÏ£¬½øÐÐÐÞÀí£¬ËùÓõÄʱ¼äÊÇ1Сʱ£®
£¨3£©B³ö·¢ºó3СʱÓëAÏàÓö£®
£¨4£©ÈôBµÄ×ÔÐгµ²»·¢Éú¹ÊÕÏ£¬±£³Ö³ö·¢Ê±µÄËÙ¶ÈÇ°½ø£¬ÄÇôÓëAµÄÏàÓöµãÀëBµÄ³ö·¢µãÏà¾à$\frac{180}{13}$ǧÃ×£®ÔÚͼÖбíʾ³öÕâ¸öÏàÓöµãC£®

·ÖÎö £¨1£©´ÓͼÉÏ¿É¿´³öB³ö·¢Ê±ÓëAÏà¾à10ǧÃ×£»
£¨2£©ÐÞÀíµÄʱ¼ä¾ÍÊÇ·³Ì²»±äµÄʱ¼äÊÇ1.5-0.5=1Сʱ£»
£¨3£©´ÓͼÏó¿´³ö3Сʱʱ£¬Á½¸öͼÏóÏཻ£¬ËùÒÔ3СʱʱÏàÓö£»
£¨4£©Çó³öB²»·¢Éú¹ÊÕÏʱµÄ½âÎöʽºÍlAµÄ½âÎöʽ£¬ÔÙÇó³öÁ½Ö±ÏߵĽ»µã×ø±ê£¬¼´¿ÉµÃ³ö´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉͼÐοɵÃB³ö·¢Ê±ÓëAÏà¾à10ǧÃ×£»
¹Ê´ð°¸Îª£º10£»

£¨2£©ÔÚͼÖз¢ÏÖ0.5ÖÁ1.5Сʱ£¬×ÔÐгµÃ»ÓÐÐÐ×ߣ¬
¹Ê¿ÉµÃ³öÐÞÀíËùÓõÄʱ¼äΪ1Сʱ£®
¹Ê´ð°¸Îª£º1£»

£¨3£©Í¼ÖÐÁ½Ö±ÏߵĽ»µãÊÇBÓëAÏàÓöµÄʱ¿Ì£¬
¼´³ö·¢3СʱºóÓëAÏàÓö£®
¹Ê´ð°¸Îª£º3£»

£¨4£©ÉèB²»·¢Éú¹ÊÕÏʱµÄ½âÎöʽΪ£ºy=k1x£¬¸ù¾ÝÌâÒâµÃ£º
7.5=0.5k1£¬
½âµÃ£ºk1=15£¬
Ôò½âÎöʽΪy=15x£¬
ÉèlAµÄ½âÎöʽΪ£»y=k2x+b£¬
ÓÉÌâÒâµÃ£º
$\left\{\begin{array}{l}{10=b}\\{22.5=3{k}_{2}+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=\frac{25}{6}}\\{b=10}\end{array}\right.$£¬
ÔòlAµÄ½âÎöʽΪ£»y=$\frac{25}{6}$x+10£¬
ÓÉ$\left\{\begin{array}{l}{y=15x}\\{y=\frac{25}{6}x+10}\end{array}\right.$µÃ£º
$\left\{\begin{array}{l}{x=\frac{12}{13}}\\{y=\frac{180}{13}}\end{array}\right.$£®
ÔòÓëAµÄÏàÓöµãÀëBµÄ³ö·¢µãÏà¾à$\frac{180}{13}$ǧÃ×£»
Èçͼ£º
¹Ê´ð°¸Îª£º$\frac{180}{13}$£®

µãÆÀ ±¾Ì⿼²éÒ»´Îº¯ÊýµÄÓ¦Ó㬹ؼüÊÇ´ÓͼÏóÉÏ»ñÈ¡ÐÅÏ¢£¬¸ù¾ÝͼÏóÈ·¶¨º¯ÊýÐÎʽ£¬Éè³öº¯Êýʽ£¬´úÈëÒÑÖªµãÈ·¶¨º¯Êýʽ£¬ÄѶÈÒ»°ã£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®²»µÈʽ3£¨x+2£©¡Ý7µÄ½â¼¯Îªx¡Ý$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬¡ÑOÓëÉäÏßAMÏàÇÐÓÚµãB£¬¡ÑOµÄ°ë¾¶Îª3£®Á¬½áDA£¬×÷OC¡ÍOA ½»¡ÑOÓÚµãC£¬Á¬½áBC£¬½»DAÓÚµãD£®
£¨1£©ÇóÖ¤£ºAB=AD£»
£¨2£©Èôcos¡ÏA=$\frac{4}{5}$£¬ÇóODµÄ³¤£»
£¨3£©ÊÇ·ñ´æÔÚ¡÷AOBÓë¡÷CODÈ«µÈµÄÇéÐΣ¿Èô´æÔÚ£¬ÇóABµÄ³¤£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬AE¡ÍBCÓÚE£¬AF¡ÍCDÓÚF£¬¡ÏEAF=45¡ã£¬ÇÒAE+AF=2$\sqrt{2}$£¬ÔòƽÐÐËıßÐÎABCDµÄÖܳ¤ÊÇ£¨¡¡¡¡£©
A£®2B£®4$\sqrt{2}$C£®4D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬BD¡¢CE·Ö±ðÊÇ¡÷ABCµÄ¸ß£¬ÔÚBDÉÏÈ¡Ò»µãP£¬Ê¹BP=AC£¬ÔÚCEµÄÑÓ³¤ÏßÉÏÈ¡Ò»µãQ£¬Ê¹CQ=AB£¬Á¬½ÓAQÓëAP£®
£¨1£©ÇóÖ¤£º¡÷ABP¡Õ¡÷QCA£»
£¨2£©ÅжÏAPÓëAQµÄλÖùØϵ²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®µ±a=-3ʱ£¬·½³Ì×é$\left\{{\begin{array}{l}{x+2y-6=0}\\{x-y-9-3a=0}\end{array}}\right.$µÄ½âÂú×ãx=y£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣻
£¨1£©2$\sqrt{12}$+3$\sqrt{1\frac{1}{3}}$-$\sqrt{5\frac{1}{3}}$-$\frac{2}{3}$$\sqrt{48}$      
£¨2£©$\sqrt{48}$-$\sqrt{54}$¡Â2+£¨3-$\sqrt{3}$£©£¨1+$\frac{1}{\sqrt{3}}$£©
£¨3£©£¨2$\sqrt{3}$-$\sqrt{2}$£©2+$\sqrt{8}$¡Â$\sqrt{\frac{1}{3}}$-£¨3$\sqrt{3}$+2$\sqrt{5}$£©£¨3$\sqrt{3}$-2$\sqrt{5}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¼ÆË㣺
£¨1£©$\sqrt{12}-2\sqrt{20}+5\sqrt{\frac{4}{5}}$
£¨2£©$\sqrt{24}$+4$\sqrt{\frac{3}{8}}$-$\sqrt{3}$¡Á$\sqrt{18}$+$\frac{\sqrt{84}}{\sqrt{14}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÈôaÊÇ·½³Ìx2+x-6=0µÄÒ»¸ö¸ù£¬Ôòa2+a+2µÄֵΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸