精英家教网 > 初中数学 > 题目详情
如图,点A在双曲线的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为            

试题分析:连DC,如图,

∵AE=3EC,△ADE的面积为3,
∴△CDE的面积为1,
∴△ADC的面积为4,
设A点坐标为(a,b),则AB=a,OC=2AB=2a,
而点D为OB的中点,
∴BD=OD=b,
∵S梯形OBAC=SABD+SADC+SODC
(a+2a)×b=b+4+×2a×b,
∴ab=
把A(a,b)代入双曲线y=
∴k=ab=
故答案是
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为(   )
A.1        B.2          C.3           D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+1与y轴交于A点,与反比列函数y=(x>0)的图象交于点M,过M作MH⊥x,且tan∠AHO=
(1)求k的值;
(2)设点N(1,a)是反比例函数y=(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先化简
a+1
a-3
-
a-3
a+2
÷
a2-6a+9
a2-4
,再对a取一个你喜欢的数,代入求值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)都在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△PnAn﹣1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,An﹣1An都在x轴上(n是大于或等于2的正整数),已知点A1的坐标为(2,0),则点P1的坐标为    ;点P2的坐标为    ;点Pn的坐标为     (用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=
探究:如图1,AH⊥BC于点H,则AH=       ,AC=    ,△ABC的面积SABC=      
拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为SABD=0)
(1)用含x,m,n的代数式表示SABD及SCBD
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.
发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

反比例函数的图象在第   象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知点(-1,y1)、(2,y2)、(3,y3)在反比例函数的图象上.下列结论中正确的是
A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1

查看答案和解析>>

同步练习册答案