精英家教网 > 初中数学 > 题目详情
如图,直线BE交x轴正半轴于点B(a,0),交y轴正半轴于点E(0,b),且a、b满足
a-4
+|4-b|=0
,点A为BE的中点,
(1)写出A点坐标为
(2,2)
(2,2)

(2)如图,若C为线段OB上一点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连BD,求证:OA∥BD;
(3)如图,P为x轴上B点右侧任意一点,以EP为边作等腰Rt△EPM,其中PE=PM,直线MB交y轴点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变;求其值;若变化,求线段OQ的取值范围.
分析:(1)根据题意知a=4,b=4,得出△EOB为等腰直角三角形,又有A为EA的中点,得出点A的坐标.
(2)利用等腰直角三角形△ACD求出∠CAB=∠CDB,再利用对顶角相等,从而得出∠ABD=90°=∠OAB,再根据平行线的判定得出OA∥BD.
(3)利用等腰直角三角形的特点得出∠EPO=∠PMD,∠PEO=∠MPD.又三角形全等的性质得出MD=OP,PD=AO=BO,OP=OA+AP=PD+AP=AD,最后得出无论P点怎么动OQ的长不变.
解答:解:(1)∵
a-4
+
.
b-4 
  
.
=0

∴a=4,b=4,
∴△EOB为等腰直角三角形.
∴点A的坐标为(2,2),
故答案为(2,2);

(2)∵以AC为直角边作等腰直角△ACD,∠ACD=90°,
∴∠CAB+∠BAD=45°,∠CDB+∠BAD+∠ADC=90°,
∴∠CAB=∠CDB,
∴∠ABD=90°=∠OAB,
∴OA∥BD;

(3)过M作MD⊥x轴,垂足为D.
∵∠EPM=90°,
∴∠EPO+MPD=90°.
∵∠QOB=∠MDP=90°,
∴∠EPO=∠PMD,∠PEO=∠MPD.
在△PEO和△MPD中,
∠EPO=∠PMD
∠PEO=∠MPD
EP=MP

∴△PEO≌△MPD,
MD=OP,PD=AO=BO,
OP=OA+AP=PD+AP=AD,
∴MD=AD,∠MAD=45°.
∵∠BAO=45°,
∴△BAQ是等腰直角三角形.
∴OB=OQ=4.
∴无论P点怎么动OQ的长不变.
点评:本题考查了绝对值的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质,题目的综合性比较强,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0.
(1)判断△AOB的形状.
(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
(3)如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,
(1)求直线l2的解析式;
精英家教网
(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;
精英家教网
(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,
(1)求直线l2的解析式;

(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;

(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0.
(1)判断△AOB的形状.
(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
(3)如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.
作业宝作业宝作业宝

查看答案和解析>>

同步练习册答案