【题目】如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连接CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.
(1)连结BC,求证:△BCD≌△DFB;
(2)求证:PC是⊙O的切线;
(3)若tanF=,AG﹣BG=,求ED的值.
【答案】(1)详见解析;(2)详见解析;(3)DE=.
【解析】
(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.
(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.
(3)由于∠BCD=∠F,于是tan∠BCD=tanF=,设BG=2x,则CG=3x.注意到AB是直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BGAG,可得出AG的表达式(用x表示),再根据AG-BG=求出x的值,从而CG、CB、BD、CD的长度可依次得出,最后利用△DEB∽△DBC列出比例关系算出ED的值.
解:(1)证明:因为BE=DE,
所以∠FBD=∠CDB,
在△BCD和△DFB中:
∠BCD=∠DFB
∠CDB=∠FBD
BD=DB
所以△BCD≌△DFB(AAS).
(2)证明:连接OC.
因为∠PEC=∠EDB+∠EBD=2∠EDB,
∠COB=2∠EDB,
所以∠COB=∠PEC,
因为PE=PC,
所以∠PEC=∠PCE,
所以∠PCE=∠COB,
因为AB⊥CD于G,
所以∠COB+∠OCG=90°,
所以∠OCG+∠PEC=90°,
即∠OCP=90°,
所以OC⊥PC,
所以PC是圆O的切线.
(3)因为直径AB⊥弦CD于G,
所以BC=BD,CG=DG,
所以∠BCD=∠BDC,
因为∠F=∠BCD,tanF=,
所以∠tan∠BCD==,
设BG=2x,则CG=3x.
连接AC,则∠ACB=90°,
由射影定理可知:CG2=AGBG,
所以AG=,
因为AG﹣BG=,
所以,
解得x=,
所以BG=2x=,CG=3x=,
所以BC=,
所以BD=BC=,
因为∠EBD=∠EDB=∠BCD,
所以△DEB∽△DBC,
所以,
因为CD=2CG=,
所以DE=.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为,其圆心P在x轴上运动.
(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;
(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;
(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出AG+OG的最小值 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P,Q同时从点C出发,均以1cm/s的速度运动,其中点P沿CA向终点A运动;点Q沿CB向终点B运动.过点P作PE∥BC,分别交AD,AB于点E,F,设动点Q运动的时间为t秒.
(1)求DQ的长(用含t的代数式表示);
(2)以点Q,D,F,E为顶点围成的图形面积为S,求S与t之间的函数关系式;
(3)连接PQ,若点M为PQ中点,在整个运动过程中,直接写出点M运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.已知A、B两地相距2400米.
(1)求农户c到公路B的距离;(参考数据:sin22°≈,cos22°≈,tan22°≈)
(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,丰富课余生活,决定开设以下体育课外活动项目:A.篮球,B.乒乓球,C.羽毛球,D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人,在扇形统计图中B区域的圆心角度数为 ;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,学校决定从这四名同学中任选两名参加市乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,则AF=.其中正确的结论是______.(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A1,A2,A3,…An是x轴上的点,且OA1=A1A2=A2A3=…=An-1An=1,分别过点A1,A2,A3,…An作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2……,记△B1P1B2的面积为S1,△B2P2B3的面积为S2……,△B6P6B7的面积为S6,则S1+S2+S3+…+S6=______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com