精英家教网 > 初中数学 > 题目详情
精英家教网如图,如果直线L上依次有3个点A、B、C,那么
(1)在直线L上共有多少射线?多少条线段?
(2)在直线L上增加一个点,共增加了多少条射线?多少条线段?
(3)如果在直线L上增加到n个点,则共有多少条射线?多少条线段?
分析:(1)一个直线上的每一个点对应两条射线,可求出射线的条数,分别以A、B为起点可查找出线段的条数.
(2)根据分析(1)可得出答案.
(3)根据(1)(2)可得出增加一个点后增加的射线条数及线段条数,有特殊到一般总结即可得出答案.
解答:解:(1)以A,B,C为端点的射线各自有2条,因而共有射线6条,
线段有:AB,AC,BC,共有线段3条.
(2)由分析得:增加一个点增加2条射线,增加3条线段.
(3)由分析(1)可得共有2n条射线,
线段的总条数是
1
2
n(n-1)条.
点评:本题考查直线射线及线段的知识,难度不大,注意基本概念的掌握及规律的总结.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为-1,直线l y=-X-与坐标轴分别交于A,C两点,点B的坐标为(4,1) ,⊙B与X轴相切于点M. 

(1)  求点A的坐标及∠CAO的度数;       

(2) ⊙B以每秒1个单位长度的速度沿X轴负方向平移,同时,直线l绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线l也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度?

(3)如图2.过A,O,C三点作⊙O1,点E是劣弧上一点,连接EC,EA.EO,当点E在劣弧上运动时(不与A,O两点重合),的值是否发生变化?如果不变,求其值,如果变化,说明理由.                                                    

.                       

 

 

【解析】(1)已知点A,C的坐标,故可推出OA=OC,最后可得∠CAO=45°.

(2)依题意,设⊙B平移t秒到⊙B1处与⊙O第一次相切,连接B1O,B1N,则MN=3.连接B1A,B1P可推出∠PAB1=∠NAB1.又因为OA=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O继而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直线AC绕点A平均每秒30度.

(3)在CE上截取CK=EA,连接OK,证明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可证明

 

查看答案和解析>>

科目:初中数学 来源:2012届浙江省台州六校九年级上学期第二次联考数学卷(解析版) 题型:解答题

如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为-1,直线l y=-X-与坐标轴分别交于A,C两点,点B的坐标为(4,1) ,⊙B与X轴相切于点M. 

(1)  求点A的坐标及∠CAO的度数;       

(2) ⊙B以每秒1个单位长度的速度沿X轴负方向平移,同时,直线l绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线l也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度?

(3)如图2.过A,O,C三点作⊙O1 ,点E是劣弧上一点,连接EC,EA.EO,当点E在劣弧上运动时(不与A,O两点重合),的值是否发生变化?如果不变,求其值,如果变化,说明理由.                                                    

.                       

 

 

【解析】(1)已知点A,C的坐标,故可推出OA=OC,最后可得∠CAO=45°.

(2)依题意,设⊙B平移t秒到⊙B1处与⊙O第一次相切,连接B1O,B1N,则MN=3.连接B1A,B1P可推出∠PAB1=∠NAB1.又因为OA=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O继而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直线AC绕点A平均每秒30度.

(3)在CE上截取CK=EA,连接OK,证明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可证明

 

查看答案和解析>>

同步练习册答案