【题目】某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.
(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?
(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了a%:实木椅子的销售量比第一月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.
【答案】(1)普通椅子销售了400把,实木椅子销售了500把;(2)a的值为15.
【解析】
(1)设普通椅子销售了x把,实木椅子销售了y把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.
(1)设普通椅子销售了x把,实木椅子销售了y把,
依题意,得:,
解得:.
答:普通椅子销售了400把,实木椅子销售了500把.
(2)依题意,得:(180﹣30)×400(1+a%)+400(1﹣2a%)×500(1+a%)=251000,
整理,得:a2﹣225=0,
解得:a1=15,a2=﹣15(不合题意,舍去).
答:a的值为15.
科目:初中数学 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图
请根据以上信息回答:
(1)本次参加抽样调查的居民有________人;
(2)扇形统计图中:a=________,b=_________,并把条形统计图补充完整;
(3)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形中,,是对角线上的一点,点在的延长线上,且,交于,连接.
(1)证明:;
(2)判断的形状,并说明理由.
(3)如图2,把菱形改为正方形,其他条件不变,直接写出线段与线段的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生每天完成家庭作业所用时间的情况,随机抽取了部分学生进行调查,并将所得数据进行整理,制作成条形统计图和扇形统计图如下:
(1)扇形统计图中扇形的圆心角的度数为______;
(2)补全条形统计图;
(3)若该中学有2000名学生,请估计有多少名学生能在1.5小时以内完成家庭作业?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
(1)这次接受调查的市民总人数是 ;请补全条形统计图;
(2)扇形统计图中,“电视”所对应的圆心角的度数是 ;
(3)若该市约有90万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,和的平分线相交于点,过点作交于点,交于点,交于点,连接.给出以下四个结论:
①若,;
②;
③平分;
④若,,则.
其中正确的有________.(把所有正确结论的序号都选上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.
(1)填空:
①原点O与线段BC的“近距离”为 ;
②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为 ;
(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;
(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0<α≤180),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+2与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求H点的坐标及k的值;
(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;
(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com