分析 【小试牛刀】根据三角形的面积和梯形的面积就可表示出.
【知识运用】(1)连接CD,作CE⊥AD于点E,根据AD⊥AB,BC⊥AB得到BC=AE,CE=AB,从而得到DE=AD-AE=24-16=8千米,利用勾股定理求得CD两地之间的距离.
(2)连接CD,作CD的垂直平分线角AB于P,P即为所求;设AP=x千米,则BP=(40-x)千米,分别在Rt△APD和Rt△BPC中,利用勾股定理表示出CP和PD,然后通过PC=PD建立方程,解方程即可.
【知识迁移】根据轴对称-最短路线的求法即可求出.
解答 解:【小试牛刀】S梯形ABCD=$\frac{1}{2}$a(a+b),S△EBC=$\frac{1}{2}$b(a-b),S四边形AECD=$\frac{1}{2}$c2,
它们满足的关系式为:$\frac{1}{2}$a(a+b)=$\frac{1}{2}$b(a-b)+$\frac{1}{2}$c2,
答案为:$\frac{1}{2}$a(a+b),$\frac{1}{2}$b(a-b),$\frac{1}{2}$c2,$\frac{1}{2}$a(a+b)=$\frac{1}{2}$b(a-b)+$\frac{1}{2}$c2.
【知识运用】(1)如图2①,连接CD,作CE⊥AD于点E,
∵AD⊥AB,BC⊥AB,
∴BC=AE,CE=AB,
∴DE=AD-AE=25-16=9千米,
∴CD=$\sqrt{D{E}^{2}+C{E}^{2}}$=$\sqrt{{9}^{2}+4{0}^{2}}$=41(千米),
∴两个村庄相距41千米.
故答案为:41.
(2)如图2②所示:
设AP=x千米,则BP=(40-x)千米,
在Rt△ADP中,DP2=AP2+AD2=x2+242,
在Rt△BPC中,CP2=BP2+BC2=(40-x)2+162,
∵PC=PD,
∴x2+242=(40-x)2+162,
解得x=16,
即AP=16千米.
【知识迁移】:如图3,
代数式$\sqrt{{x}^{2}+9}$+$\sqrt{(16-x)^{2}+81}$的最小值为:$\sqrt{(9+3)^{2}+1{6}^{2}}$=20.
点评 本题考查了四边形综合以及用数形结合来证明勾股定理,勾股定理的应用,轴对称-最短路线问题以及线段的垂直平分线等,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 80分 | B. | 84分 | C. | 86分 | D. | 90分 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{x+y=836}\\{5x-6y=1284}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y=836}\\{6x-5y=1284}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{x+y=836}\\{6x-5y=1284}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x-y=836}\\{6y-5x=1284}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (4,-2) | B. | (-2,4) | C. | (4,2) | D. | (0,-2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com