【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ACDE为菱形时,求BE的长.
【答案】(1)见解析;(2)
【解析】
(1)由旋转的性质可得AE=AF=AB=AC=2,∠EAF=∠BAC=45°,由“SAS”可证△ABE≌△ACF,可得BE=CF;
(2)由题意可证△AEB为等腰直角三角形,由勾股定理可求解.
解:(1)∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,
∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,
∴∠BAC+∠FAB=∠EAF+∠FAB,
即∠BAE=∠CAF,
在△ABE和△ACF中
,
∴△ABE≌△ACF(SAS),
∴BE=CF;
(2)解:∵四边形ACDE为菱形,
∴EB∥AC,
∴∠EBA=∠BAC=45°,
∴△AEB为等腰直角三角形,
∴BE===,
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC=,点D、E分别在BC、AC上(点D不与点B、C重合),且∠ADE=45°,若△ADE是等腰三角形,则CE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段 AB 是⊙O 的直径,弦 CD⊥AB,AB=8,∠CAB=22.5°,则 CD的长等于___________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6B.12C.24D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是( )
A.4cmB.8cmC.16cmD.32cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.
(1)求证:△BAP≌△CAQ.
(2)若PA=3,PB=4,∠APB=150°,求PC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.
(1)求b、c的值;
(2)画出抛物线的简图并写出它与y轴的交点C的坐标;
(3)根据图象直接写出:点C关于直线x=2对称点D的坐标 ;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为 (用含m、n的式子表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com