精英家教网 > 初中数学 > 题目详情

(1)bm·bm+1·b2m·b;

(2)(2x-y)3·(2x-y)·(2x-y)4

答案:
解析:

  (1)b4m+2

  (2)(2x-y)8


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,可以说明:△ACN≌△MCB,从而得到结论:AN=BM.
现要求:
(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹);
(2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由;
(3)在(1)所得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是(  )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2
3
时,菱形ABCD的边长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图(1),点M,N分别在等边△ABC的BC,AC边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.
(2)判断下列命题的真假性:
①若将题(1)中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题(1)中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?(如图2)
③若将题(1)中的条件“点M,N分别在正△ABC的BC,AC边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?(如图3)
在下列横线上填写“是”或“否”:①
;②
;③
.并对②,③的判断,选择其中的一个给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC.∠MDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,
①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.
②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.
③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,AB=BC.在Rt△ADE中,AD=DE;连接EC,取EC中点M,连接DM和BM.
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图(1),猜想BM与DM的关系;
(2)如果将图(1)中的Rt△ADE绕点A逆时针旋转90°的角,如图(2),那么(1)中的结论是否仍然成立?如果不成立,请举出反例;如果成立,请给予证明.
(3)如果将图(1)中的Rt△ADE绕点A逆时针旋转大于90°且小于135°的角,如图(3),那么(1)中的结论是否仍然成立?如果不成立,请举出反例;如果成立,请给予证明.

查看答案和解析>>

同步练习册答案