精英家教网 > 初中数学 > 题目详情

【题目】甲,乙,丙三人各有邮票若干枚,要求互相赠送.先由甲送给乙,丙,所给的枚数等于乙,丙原来各有的邮票数;然后依同样的游戏规则再由乙送给甲,丙现有的邮票数,最后由丙送给甲,乙现有的邮票数.互相送完后,每人恰好各有64枚.你能知道他们原来各有邮票多少枚吗?说出你的思考过程.

【答案】解:设甲原有邮票x枚,乙原有邮票y枚,丙原有邮票z枚.

原有

x

y

z

第一次送后

x﹣y﹣z

2y

2z

第二次送后

2(x﹣y﹣z)

2y﹣(x﹣y﹣z)﹣2z

4z

第三次送后

4(x﹣y﹣z)

2[2y﹣(x﹣y﹣z)﹣2z]

4z﹣2(x﹣y﹣z)﹣[2y﹣(x﹣y﹣z)﹣2z]

根据第三次赠送后列方程组


③﹣②得 2z﹣y=8 ④,
②+①得 y﹣z=24 ⑤,
④+⑤得 z=32,
将z代入⑤得 y=56,
将y、z代入①得 x=104,
答:甲原有邮票104枚,乙原有邮票56枚,丙原有邮票32枚.
【解析】假设甲原有邮票x枚,乙原有邮票y枚,丙原有邮票z枚.根据题目说明列出三次赠送的过程如下表

原有

x

y

z

第一次送后

x﹣y﹣z

2y

2z

第二次送后

2(x﹣y﹣z)

2y﹣(x﹣y﹣z)﹣2z

4z

第三次送后

4(x﹣y﹣z)

2[2y﹣(x﹣y﹣z)﹣2z]

4z﹣2(x﹣y﹣z)﹣[2y﹣(x﹣y﹣z)﹣2z]

根据第三次赠送后的结果列出方程组
先化简,最后代入消元法或加减消元法求出方程组的解即可.
【考点精析】通过灵活运用解三元一次方程组,掌握通过“代入”或“加减”消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装点用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.

类型
价格

A型

B型

进价(元/件)

60

100

标价(元/件)

100

160


(1)求这两种服装各购进的件数;
(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,求黄花一共用了多少朵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点Pm2)与点Q3n)关于x轴对称,则P点关于原点对称的点M的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据为153456,这组数据的极差、众数、中位数分别为(  )

A. 445 B. 554.5 C. 554 D. 532

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABDEACDFAC=DF下列条件中不能判断ABC≌△DEF的是(  )

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,以BC为半径作B,交AB于点C,交AB的延长线于点E,连接CDCE

1)求证:ACD∽△AEC

2)当时,求tanE

3)若AD=4AC=4,求ACE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2﹣4x+3的图象关于y轴对称,则函数y=ax2+bx+c的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.

1)试举一个例子来判断上述猜测结论是否成立;

2)若互为相反数,求的值.

查看答案和解析>>

同步练习册答案