精英家教网 > 初中数学 > 题目详情
一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(
2
≈1.4,
3
≈1.7,结果保留整数).
∵∠BAC=53°-23°=30°,
∴∠C=23°+22°=45°.
过点B作BD⊥AC,垂足为D,则CD=BD.
∵BC=10,
∴CD=BC•cos45°=10×
2
2
=5
2
≈7.0,
∴AD=
BD
tan30°
=5
2
÷
3
3
=5
2
×
3
3
=5
2
×
3
≈5×1.4×1.7≈11.9.
∴AC=AD+CD=11.9+7.0=18.9≈19.
答:小船到码头的距离约为19海里.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,线段AB、DC分别表示甲乙两座建筑物的高,AB⊥BC,DC⊥BC,两建筑物的水平距离BC为30米,若甲建筑物的高AB=28米,在点A处观察乙建筑物顶部D的仰角为60°,求乙建筑物的高度(结果保留1位小数,
3
≈1.73
).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一人工湖的对岸有一条笔直的小路,湖上原有一座小桥与小路垂直相通,现小桥有一部分已断裂,另一部分完好.站在完好的桥头A测得路边的小树D在它的北偏西30°,向正北方向前进32米到断口B处,又测得小树D在它的北偏西45°,请计算小桥断裂部分的长.(
3
≈1.73
,结果保留整数)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是一棵古树,某校初四(1)班数学兴趣小组的同学想利用所学知识测出这棵古树的高,过程如下:在古树同侧的水平地面上,分别选取了C、D两点(C、D两点与古树在同一直线上),用测角仪在C处测得古树顶端A的仰角α=60°,在D处测得古树顶端A的仰角β=30°,又测得C、D两点相距14米.已知测角仪高为1.5米,请你根据他们所测得的数据求出古树AB的高.(精确到0.1米,
3
≈1.732)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E到地面的距离EF的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:△ABC中,∠C=90°,a=3,∠A=30°,求∠B、b、c.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学老师组织学生实地测量烟囱的高度,他们选择矩形建筑物ABCD附近进行测量,所带工具有量距离的皮尺和测仰角、俯角的测角仪.由于障碍不能到达烟囱底部,但可量得AB、BC的长为a、b,以及测角仪的高度为c,在A、B处能看到点E、F,在C处能看到点E.
(1)请你设计一种能求出烟囱高度EF的方案,并画图说明.
(2)你所测出的仰角或俯角用字母α、β、γ等表示,请推算出你的设计方案中求EF的计算公式(可含字母a、b、c和α、β、γ的三角函数).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,初二•一班数学兴趣小组为了测量河两岸建筑物AB和建筑物CD的水平距离AC,他们首先在A点处测得建筑物CD的顶部D点的仰角为25°,然后爬到建筑物AB的顶部B处测得建筑物CD的顶部D点的俯角为15°30′.已知建筑物AB的高度为30米,求两建筑物的水平距离AC.(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米)

查看答案和解析>>

同步练习册答案