精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数的图象与轴分别交于A(1,0),B(3,,0)两点,与轴交于点C.

(1)求此二次函数解析式;

(2)点D为抛物线的顶点,试判断的形状,并说明理由.

【答案】(1);(2)为直角三角形理由详见解析.

【解析】

(1)利用待定系数法进行求解即可得;

(2)先求出抛物线顶点坐标,然后利用勾股定理分别求出CD、BC、BC的长,然后再利用勾股定理逆定理进行求解即可得△BCD为直角三角形.

(1)A、B两点坐标分别代入函数,得

,解得

所以,二次函数解析式为y=x2-4x+3;

(2)BCD为直角三角形理由如下:

y=x2-4x+3=(x-2)2-1,

∴抛物线顶点坐标D(2,-1),

∴△BCD为直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x轴正半轴上的点,连接AB,AC,BC.

1)如图1,OB=1,OC =,A,B,C在同一条直线上,求t的值;

2)如图 2, t =1,∠ACO +ACB = 180°时,求 BC + OC -OB 的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GEDC于点E,GFBC于点F,连结AG.

(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;

(2)若正方形ABCD的边长为1,AGF=105°,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ADABC的中线,AEABAFAC,且AE=ABAF=ACAD=3AB=4

1)求AC长度的取值范围;

2)求EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC90°,分别以ACBC为边长,在三角形外作正方形ACFG和正方形BCED.若AC4AB6,则EF______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为5cm的等边三角形,点PQ分别从顶点AB同时出发,沿线段ABBC运动,且它们的速度都为1cm/s.当点P到达点B时,PQ两点停止运动,设点P的运动时间为ts).

1)当t为何值时,PBQ是直角三角形?

2)连接AQCP,相交于点M,则点PQ在运动的过程中,CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广,为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的汉字听写大赛为了解本次大赛的成绩,校团委随机抽取了其中若干名学生的成绩作为样本进行统计,制成如下不完整的统计图表:

成绩

频数

频率

10

 

30

 

40

n

 

m

 

50

a

1

请根据所给信息,解答下列问题:

______,______,______;

补全频数直方图;

这若干名学生成绩的中位数会落在______分数段;

若成绩在90分以上包括90的为等,请你估计该校参加本次比赛的3000名学生中成绩是等的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:如图,ABCDGHEG平分∠BEFFG平分∠EFD

求证:∠EGF90°

证明:∵ABGH(已知),

∴∠1=∠3   ),

又∵CDGH(已知),

   (两直线平行,内错角相等)

ABCD(已知),

∴∠BEF+   180°(两直线平行,同旁内角互补)

EG平分∠BEF(已知),

∴∠1    (角平分线定义),

又∵FG平分∠EFD(已知),

∴∠2EFD   ),

∴∠1+2   +EFD

∴∠l+290°

∴∠3+490°(等量代换),

即∠EGF90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中是真命题的是( )

A. 有两边和其中一边的对角对应相等的两个三角形全等

B. 两条平行直线被第三条直线所截,则一组同旁内角的平分线互相垂直

C. 三角形的一个外角等于两个内角的和

D. 等边三角形既是中心对称图形,又是轴对称图形

查看答案和解析>>

同步练习册答案