精英家教网 > 初中数学 > 题目详情
已知,二次函数y=ax2+bx的图象如图所示.
(1)若二次函数的对称轴方程为x=1,求二次函数的解析式;
(2)已知一次函数y=kx+n,点P(m,0)是x轴上的一个动点.若在(1)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=ax2+bx的图象于点N.若只有当1<m<
53
时,点M位于点N的上方,求这个一次函数的解析式;
(3)若一元二次方程ax2+bx+q=0有实数根,请你构造恰当的函数,根据图象直接写出q的最大值.
分析:(1)根据二次函数的对称轴方程为x=1,可得出函数经过点(0,0)和(2,0),结合顶点坐标可得出抛物线的解析式;
(2)根据题意可判断出一次函数的图象与二次函数的图象交点的横坐标分别为1和
5
3
,代入二次函数解析式可求出交点坐标,代入一次函数解析式可得出k与n的值,继而得出一次函数解析式.
(3)先根据抛物线的开口向上可知a>0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+q=0有实数根可得到关于q的不等式,求出q的取值范围即可.
解答:解:(1)由二次函数的图象可知:二次函数的顶点坐标为(1,-3),
∵二次函数的对称轴方程为x=1,
∴二次函数与x轴的交点坐标为(0,0),(2,0),
于是得到方程组
a+b=-3
4a+2b=0.

解得:
a=3
b=-6.

故二次函数的解析式为 y=3x2-6x.

(2)由(1)得二次函数解析式为y=3x2-6x.
依题意可知,一次函数的图象与二次函数的图象交点的横坐标分别为1和
5
3

由此可得交点坐标为(1,-3)和(
5
3
, -
5
3
)

将交点坐标分别代入一次函数解析式y=kx+n中,
k+n=-3
5
3
k+n=-
5
3

解得:
k=2
n=-5

故一次函数的解析式为y=2x-5.

(3)一元二次方程ax2+bx+q=0有实数根,可以理解为y=ax2+bx和y=-q有交点,

可见,-q≥-3,
解得:q≤3,
故q的最大值为3.
点评:本题考查了二次函数与一次函数的综合,第一问是常见的问题,利用待定系数法可以解决,第二问的关键是确定交点的坐标,第三问的关键是数形结合,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案