精英家教网 > 初中数学 > 题目详情
26、已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90°,请判断OE是否是∠BOC的平分线,并说明理由.
分析:要证OE是∠BOC的平分线,只需证∠EOB=∠EOC,根据等角的余角相等这一性质,即可证得结论.
解答:解:OE是∠BOC的平分线,
∵OD是∠AOC的平分线,
∴∠AOD=∠COD,
又∠DOE=90°,
∴∠COD+∠EOC=90°,
∴∠AOD+∠EOB=90°,
∴∠EOB=∠EOC,
∴OE是∠BOC的平分线.
点评:涉及到角的运算时,充分利用已知条件和隐含条件(平角、余角、补角、对顶角等)是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,从地面上的点P测得大楼的某扇窗户A的仰角为37°,再从点P测得该大楼窗户A正上方的另一扇精英家教网窗户B,这时PA平分∠BPC.若点P到大楼的水平距离PC为10米.
(1)求∠BPC的度数;
(2)试求窗户B到地面的竖直高度BC(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省南通市通州区中考数学一模试卷(解析版) 题型:解答题

已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年福建省泉州市晋江市初中学业质量检查数学试卷(解析版) 题型:解答题

(2009•晋江市质检)已知:如图,从地面上的点P测得大楼的某扇窗户A的仰角为37°,再从点P测得该大楼窗户A正上方的另一扇窗户B,这时PA平分∠BPC.若点P到大楼的水平距离PC为10米.
(1)求∠BPC的度数;
(2)试求窗户B到地面的竖直高度BC(精确到0.1米).

查看答案和解析>>

同步练习册答案