精英家教网 > 初中数学 > 题目详情
22、如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称,
(1)在图中标出点E,且点E的坐标为
(0,-1)

(2)点P(a,b)是△ABC边AB上一点,△ABC经过平移后点P的对应点P′的坐标为(a-6,b+2),请画出上述平移后的△A2B2C2,此时A2的坐标为
(-3,4)
,C2的坐标为
(-2,2)

(3)若△A1B1C1和△A2B2C2关于点F成位似三角形,则点F的坐标为
(-3,0)
分析:(1)根据中心对称的性质,任何一对对应点连线的中点即为对称中心E;
(2)将△ABC向左平移6个单位长度,再向上平移2个单位长度,即可得到△A2B2C2,根据平移的规律,可分别写出点A2和C2的坐标;
(3)根据位似三角形的定义求出点F的坐标.
解答:解:(1)如图,线段BB1的中点即为点E,
∵B(1,1),B1(-1,-3)
∴E(0,-1);

(2)如图,
∵点P(a,b)是△ABC边AB上一点,△ABC经过平移后点P的对应点P′的坐标为(a-6,b+2),
又∵A(3,2),C(4,0),
∴A2(-3,4),C2(-2,2);

(3)∵对应顶点A1A2与B1B2的连线交于点(-3,0),
∴F(-3,0).
点评:本题主要考查了中心对称、平移变换及位似变换的性质.
中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.
平移的性质:平移不改变图形的形状和大小,只改变图形的位置,连接各组对应点的线段平行且相等.
位似图形的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案