精英家教网 > 初中数学 > 题目详情
已知抛物线y=-x2-2x+a(a>0)与y轴相交于点A,顶点为M.直线y=
1
2
x+
1
2
a
与x轴相交于B点,与直线AM相交于N点;直线AM与x轴相交于C点
(1)求M的坐标与MA的解析式(用字母a表示);
(2)如图,将△NBC沿x轴翻折,若N点的对应点N′恰好落在抛物线上,求a的值;
(3)在抛物线y=-x2-2x+a(a>0)上是否存在一点P,使得以P、B、C、N为顶点的四边形是平行四边形?若存在,求出a的值;若不存在,说明理由.
(1)已知抛物线:y=-x2-2x+a=-(x+1)2+a+1;
∴M(-1,a+1),
易知:A(0,a),设直线MA的解析式为y=kx+b,则有:
b=a
-k+b=a+1

解得
k=-1
b=a

∴直线MA:y=-x+a;

(2)联立直线MA、直线BN的解析式有:
y=-x+a
y=
1
2
x+
1
2
a

解得
x=
a
3
y=
2a
3

故N(
a
3
2
3
a);
由题意知:N、N′关于x轴对称,那么N′(
a
3
,-
2a
3
);
若点N′在抛物线的图象上,则有:
-(
a
3
2-
2a
3
+a=-
2a
3

解得a=9.
故点N′恰好落在抛物线上时,a=9;

(3)分别过B、C、N作NC、BN、BC的平行线(如图),则四边形BP1CN、四边形BCP2N、四边形BCNP3都是平行四边形;
易知B(-a,0),C(a,0),N(
a
3
2a
3
);
故P1(-
1
3
a,-
2
3
a),P2
7
3
a,
2
3
a),
P3(-
5
3
a,
2
3
a);
把P1代入抛物线的解析式中,得:
-(-
1
3
a)2-2(-
1
3
a)+a=-
2
3
a,
解得a=21;
把P2代入抛物线的解析式中,得:
-(
7
3
a)2-2×
7
3
a+a=
2
3
a,
解得a=-
39
49

由于a>0,
故此种情况不成立;
把P3代入抛物线的解析式中,得:
-(-
5
3
a)2-2(-
5
3
a)+a=
2
3
a,
解得a=
33
25

综上所述,存在符合条件的P点,且此时a的值为:a1=
33
25
,a2=21.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一网球从斜坡的点O抛出,网球的抛物线为y=4x-
1
2
x2
,斜坡OA的坡度i=1:2,则网球在斜坡的落点A的垂直高度是(  )
A.2B.3.5C.7D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PEx轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于
7
2
时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

欢欢家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈(如图),一面墙的中间留出1米宽的进出门(门使用另外的材料).现备有足够砌11米长的围墙的材料,设猪圈与已有墙面垂直的墙的长度为x米,猪圈面积为y平方米.
(1)写出y与x之间的函数关系式.
(2)要使猪圈面积为16平方米,如何设计三面围墙的长度.
(3)能否使猪圈面积为20平方米?说明理由.
(4)你能求出猪圈面积的最大值吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一男生推铅球,铅球在运动过程中,高度不断发生变化.已知当铅球飞出的水平距离为x时,其高度为(-
1
12
x2+
2
3
x+
5
3
)
米,则这位同学推铅球的成绩为(  )
A.9米B.10米C.11米D.12米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(-
3
5
a
,0)且与OE平行,现正方形以每秒
a
10
的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某校数学研究性学习小组准备设计一种高为60cm的简易废纸箱.如图甲,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm的正方形硬纸板围成.经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.该小组通过多次尝试,最终选定乙图中的简便且易操作的三种横截面图形.在三个图的比较中,图______横截面图形的面积最大(填序号①②③),则围成最大的体积是______cm3.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a

查看答案和解析>>

同步练习册答案