分析 (1)利用角边角可得△DCE≌△MDA,那么可得DE=DM,∠EDC=∠MDA,进而根据∠ADC=90°可得DE⊥DM;
(2)先证明四边形CFMD是平行四边形,得出DM=CF,DM∥CF,再证明四边形DENM都是矩形,得出EN=DM,EN∥DM,得出CF=EN,CF∥EN,即可得出结论.
解答 (1)证明:∵四边形ABCD是正方形,
∴DC=DA,∠DCE=∠DAM=90°,
在△DCE和△MDA中,$\left\{\begin{array}{l}{DC=DA}\\{∠DCE=∠DAM}\\{CE=AM}\end{array}\right.$,
∴△DCE≌△MDA(SAS),
∴DE=DM,∠EDC=∠MDA.
又∵∠ADE+∠EDC=∠ADC=90°,
∴∠ADE+∠MDA=90°,
∴DE⊥DM;
(2)解:四边形CENF是平行四边形,理由如下:
∵四边形ABCD是正方形,
∴AB∥CD,AB=CD.
∵BF=AM,
∴MF=AF+AM=AF+BF=AB,
即MF=CD,
又∵F在AB上,点M在BA的延长线上,
∴MF∥CD,
∴四边形CFMD是平行四边形,
∴DM=CF,DM∥CF,
∵NM⊥DM,NE⊥DE,DE⊥DM,
∴四边形DENM都是矩形,
∴EN=DM,EN∥DM,
∴CF=EN,CF∥EN,
∴四边形CENF为平行四边形.
点评 本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com