精英家教网 > 初中数学 > 题目详情

(1)若=,判断代数式-+1值的符号
(2)若==,求的值。

解:(1)设==k,则a=bk,c=dk,代入,得,求值式=-+1=k-k+1=1>0,故所求式的符号为正
(2)当a+b+c≠0时,因为abc≠0,所以由等比性质得:===所以a+b=2c,b+c=2a,c+a=2b,代入得,求式==8
当a+b+c=0,a+b=--c,b+c=-a,c+a=-b,代入所求式==-1

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请先阅读例题的解答过程,然后再解答:
代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2=
5
3

根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有
a>0
b>0
a<0
b<0
,请判断王力的推测是否正确?若正确,请你求出不等式
5x-1
2x-3
>0的解集,如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),已知正方形ABCD在直线MN的上方,B、C在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证△ADG≌△ABE;
(2)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当E由B向C运动时,∠FCN的大小是否保持不变?若∠FCN的大小不变,请用含a、b的代数表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

请先阅读例题的解答过程,然后再解答:
代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2=数学公式
根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有数学公式数学公式,请判断王力的推测是否正确?若正确,请你求出不等式数学公式>0的解集,如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2004•乌鲁木齐)请先阅读例题的解答过程,然后再解答:
代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2=
根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有,请判断王力的推测是否正确?若正确,请你求出不等式>0的解集,如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年新疆乌鲁木齐市中考数学试卷(解析版) 题型:解答题

(2004•乌鲁木齐)请先阅读例题的解答过程,然后再解答:
代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2=
根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有,请判断王力的推测是否正确?若正确,请你求出不等式>0的解集,如果不正确,请说明理由.

查看答案和解析>>

同步练习册答案