精英家教网 > 初中数学 > 题目详情

【题目】中,

1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:

2)在图②中作,使它满足以下条件:

①圆心在边上;②经过点;③与边相切.

(尺规作图,只保留作图痕迹,不要求写出作法)

【答案】(1)见解析(2)见解析

【解析】

1)连接,可证得,结合平行线的性质和圆的特性可求得,可得出结论;

2)由(1)可知切点是的角平分线和的交点,圆心在的垂直平分线上,由此即可作出

1)证明:如图①,连接

的切线,

.

2)如图②所示为所求.①

①作平分线交点,

②作的垂直平分线交,以为半径作圆,

为所求.

证明:∵的垂直平分线上,

又∵平分

与边相切.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线)与轴分别交于两点,以为边在直线的上方作正方形,反比例函数的图象分别过点和点.,则的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,DBA=60°,求该段运河的河宽(即CH的长).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是等宽曲线”.除了圆以外,还有一些几何图形也是等宽曲线,如勒洛三角形(如图),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 是等宽的勒洛三角形和圆形滚木的截面图.

有如下四个结论:

①勒洛三角形是中心对称图形

②图中,点上任意一点的距离都相等

③图中,勒洛三角形的周长与圆的周长相等

④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动

上述结论中,所有正确结论的序号是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等

C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°AC4BC3.直径为5的⊙O分别与ACBC相切于点FE,与AB交于点MN,过点OOPMNP,则OP的长为(  )

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为345108,又知此次调查中捐款30元的学生一共16人.

1)孔明同学调查的这组学生共有_______人;

2)这组数据的众数是_____元,中位数是_____元;

3)若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c过点A0,2)。

1)若点(-0)也在该抛物线上,求ab满足的关系式;

2)若点A为抛物线顶点,且抛物线过点(1,1)。

①求抛物线的解析式;

②若点M是抛物线上异于点A的一个动点,点P与点O关于点A对称,直线MP交抛物线与另一个点N,点N’是抛物线上点N关于对称轴的对称点,直线PN’与抛物线交于点E,求证:直线EN恒过点O

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴交于点,与轴交于点且与反比例函数在第一象限的图象交于点轴于点.

根据函数图象,直接写出当反比例函数的函数值时,自变量的取值范围;

动点轴上,轴交反比例函数的图象于点..求点的坐标.

查看答案和解析>>

同步练习册答案