精英家教网 > 初中数学 > 题目详情
如图,在梯形中,的中点,于点
(1)求证:
(2)当,且平分时,求的长.
(1)证明详见解析.(2)EF=4.

试题分析:根据题意构造辅助线,利用中线性质和平行四边形性质即可得出结论.
(1)过D作DM∥AB,∵AD∥BC,DM∥AB,∴四边形ABMD为平行四边形,∴BM=AD∵,∴EF∥DM,又∵E为CD的中点∴F为CM中点即MF=CF,∴BF=BM+MF=AD+CF.
(2)过E作EH⊥AB,∵BE平分,∴CE=EH=DE(角平分线上一点到角两边的距离相等),在Rt△ADE和Rt△AHE中,DE=EH,AE=AE∴Rt△ADE≌Rt△AHE(SH定理)∴AH=AD=1,同理可得BH=BC=7,∴AB=AH+BH=8∵四边形ABMD为平行四边形,∴DM=AB=8,又∵E、F分别为CD、CM中点,∴.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在平行四边形ABCD中,已知AD=9㎝,AB=5㎝,AE平分∠BAD交BC边于点E,则EC的长为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE和AD在同一直线上.
操作示例:
当AE<a时,如图1,在BA上选取适当的点G,BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰能构成四边形FGCH.
思考发现:小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图所示),
实践探究:
(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法。
(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的。(提示:过点F作FM⊥AH,垂足为点M);
拓展延伸
类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,已知A(-2,1),B(-2,-1),O(0,0).若以A、B、C、O为顶点的四边形为平行四边形,那么点C的坐标是      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线MN经过线段AC的端点A,点B、D分别在的角平分线AE、AF上,BD交AC于点O,如果O是BD的中点,试找出当点O在AC的什么位置时,四边形ABCD是矩形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,?ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图),把线段AE绕点A旋转,
使点E落在直线BC上的点F处,则F、C两点的距离为____________ .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一个多边形的内角和为1800°,则这个多边形的对角线条数是          

查看答案和解析>>

同步练习册答案