精英家教网 > 初中数学 > 题目详情

如图①,②,在平面直角坐标系中,点的坐标为(40),以点为圆心,4为半径的圆与轴交于两点,为弦,轴上的一动点,连结

1)求的度数;

2)如图,当A相切时,求的长;

3)如图,当点在直径上时,的延长线与A相交于点,问为何值时,是等腰三角形?

 

【答案】

160°;(24;(32+2

【解析】

试题分析:(1OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC是个等边三角形,因此∠OAC=60°;

2)如果PC与圆A相切,那么ACPC,在直角三角形APC中,有∠PCA的度数,有A点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA-OA得出OP的值.

3)本题分两种情况:

①以O为顶点,OCOQ为腰.那么可过Cx轴的垂线,交圆于Q,此时三角形OCQ就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC即半径的长求出PO

②以Q为顶点,QCQD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OCD的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.

试题解析:(1)∵∠AOC=60°,AO=AC

∴△AOC是等边三角形,

∴∠OAC=60°.

2)∵CPA相切,

∴∠ACP=90°,

∴∠APC=90°-OAC=30°;

又∵A40),

AC=AO=4

PA=2AC=8

PO=PA-OA=8-4=4

3)①过点CCP1OB,垂足为P1,延长CP1交⊙AQ1

OA是半径,

OC=OQ1

OC=OQ1

∴△OCQ1是等腰三角形;

又∵△AOC是等边三角形,

P1O=OA=2

②过AADOC,垂足为D,延长DA交⊙AQ2CQ2x轴交于P2


A是圆心,

DQ2OC的垂直平分线,

CQ2=OQ2

∴△OCQ2是等腰三角形;

过点Q2Q2Ex轴于E

RtAQ2E中,

∵∠Q2AE=OAD=OAC=30°,

Q2E=AQ2=2AE=2

∴点Q2的坐标(4+2-2);

RtCOP1中,

P1O=2,∠AOC=60°,

CP12
C点坐标(22);

设直线CQ2的关系式为y=kx+b,则
,解得

y=-x+2+2

y=0时,x=2+2
P2O=2+2

考点: 1.切线的性质;2.等腰三角形的性质;3.等边三角形的性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球精英家教网的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•武汉模拟)要修建一个圆形喷水池,在池中心竖直安装一根2.25m的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.
(1)建立适当的平面直角坐标系,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);
(2)如图,在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3m,最内轨道的半径为rm,其上每0.3m的弧长上安装一个地漏,其它轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏.求当r为多少时池中安装的地漏的个数最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

一个多面体的面数(a)和这个多面体表面展开后得到的平面图形的顶点数(b),棱数(c)之间存在一定规律,如图1是正三棱柱的表面展开图,它原有5个面,展开后有10个顶点(重合的顶点只算一个),14条棱.

【探索发现】
(1)请在图2中用实线画出立方体的一种表面展开图;
(2)请根据图2你所画的图和图3的四棱锥表面展开图填写下表:
多面体 面数a 展开图的顶点数b 展开图的棱数c
直三棱柱 5 10 14
四棱锥
5
5
8 12
立方体
6
6
14
14
19
19
(3)发现:多面体的面数(a)、表面展开图的顶点数(b)、棱数(c)之间存在的关系式是
a+b-c=1
a+b-c=1

【解决问题】
(4)已知一个多面体表面展开图有17条棱,且展开图的顶点数比原多面体的面数多2,则这个多面体的面数是多少?

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大八年级版 2009-2010学年 第13期 总第169期 华师大版 题型:044

工具阅读:

在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系.通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.

问题探究:如图1,在6×6的方格纸中,给出如下三种变换:P变换,Q变换,R变换.

将图形F沿x轴向右平移1格得图形F1,称为作1次P变换;

将图形F沿y轴翻折得图形F2,称为作1次Q变换;

将图形F绕坐标原点顺时针旋转90°得图形F3,称为作1次R变换.

规定:PQ变换表示先作1次Q变换,再作1次P变换;QP变换表示先作1次P变换,再作1次Q变换;Rn变换表示作n次R变换.

解答下列问题:

(1)作R4变换相当于至少作________次Q变换;

(2)请在图2中画出图形F作R2011变换后得到的图形F4

(3)PQ变换与QP变换是否是相同的变换?请在图3中画出PQ变换后得到的图形F5,在图4中画出QP变换后得到的图形F6

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市南开中学九年级(上)第一次月考数学试卷(解析版) 题型:解答题

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

同步练习册答案