试题分析:(1)欲证△ABP∽△PCE,需找出两组对应角相等;由等腰梯形的性质可得出∠B=∠C,根据三角形外角的性质可证得∠EPC=∠BAP;由此得证;
(2)可过作AF⊥BC于F,由等腰梯形的性质得到AF是BC、AD差的一半,在Rt△ABF中,根据∠B的度数及BF的长即可求得AB的值;
(3)在(2)中求得了AB的长,即可求出DE:EC=5:3时,DE、CE的值.设BP的长为x,进而可表示出PC的长,然后根据(1)的相似三角形,可得出关于AB、BP、PC、CE的比例关系式,由此可得出关于x的分式方程,若方程有解,则x的值即为BP的长.若方程无解,则说明不存在符合条件的P点.
(1)由∠APC为△ABP的外角得∠APC=∠B+∠BAP;
∵∠B=∠APE
∴∠EPC=∠BAP
∵∠B=∠C
∴△ABP∽△PCE;
(2)过A作AF⊥BC于F
∵等腰梯形ABCD中,AD=3cm,BC=7cm,
∴BF=2cm,
Rt△ABF中,∠B=60°,BF=2;
∴AB=4cm;
(3)存在这样的点P.
∵DE:EC=5:3,DE+EC=DC=4
解之得EC=
cm.
设BP=x,则PC=7-x
由△ABP∽△PCE可得
∵AB=4,PC=7-x,
解之得x
1=1,x
2=6,
经检验都符合题意,
即BP=1cm或BP=6cm.
点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.