试题分析:(1)对于直线y=x+1,令x=0求出y的值,确定出A坐标,得到OA的长,根据tan∠AHO的值,利用锐角三角函数定义求出OH的长,根据MH垂直于x轴,得到M横坐标与A横坐标相同,再由M在直线y=x+1上,确定出M坐标,代入反比例解析式求出k的值即可;
(2)将N坐标代入反比例解析式求出a的值,确定出N坐标,过N作N关于y轴的对称点N
1,连接MN1,交y轴于P(如图),此时PM+PN最小,由N与N
1关于y轴的对称,根据N坐标求出N
1坐标,设直线MN
1的解析式为y=kx+b,把M,N
1的坐标代入求出k与b的值,确定出直线MN
1的解析式,令x=0求出y的值,即可确定出P坐标.
(1)由y=x+1可得A(0,1),即OA=1,
∵tan∠AHO=
,
∴OH=2,
∵MH⊥x轴,
∴点M的横坐标为2,
∵点M在直线y=x+1上,
∴点M的纵坐标为3,即M(2,3),
∵点M在
上,
∴k=2×3=6;
(2)∵点N(1,a)在反比例函数
的图象上,
∴a=6,即点N的坐标为(1,6),
过N作N关于y轴的对称点N
1,连接MN
1,交y轴于P(如图),
此时PM+PN最小,
∵N与N
1关于y轴的对称,N点坐标为(1,6),
∴N1的坐标为(-1,6),
设直线MN
1的解析式为y=kx+b,
把M,N
1的坐标得
,
解得:
,
∴直线MN
1的解析式为y=-x+5,
令x=0,得y=5,
∴P点坐标为(0,5).