精英家教网 > 初中数学 > 题目详情
如图,直线y=x+1与y轴交于A点,与反比列函数y=(x>0)的图象交于点M,过M作MH⊥x,且tan∠AHO=
(1)求k的值;
(2)设点N(1,a)是反比例函数y=(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.
(1)6;(2)(0,5).

试题分析:(1)对于直线y=x+1,令x=0求出y的值,确定出A坐标,得到OA的长,根据tan∠AHO的值,利用锐角三角函数定义求出OH的长,根据MH垂直于x轴,得到M横坐标与A横坐标相同,再由M在直线y=x+1上,确定出M坐标,代入反比例解析式求出k的值即可;
(2)将N坐标代入反比例解析式求出a的值,确定出N坐标,过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),此时PM+PN最小,由N与N1关于y轴的对称,根据N坐标求出N1坐标,设直线MN1的解析式为y=kx+b,把M,N1的坐标代入求出k与b的值,确定出直线MN1的解析式,令x=0求出y的值,即可确定出P坐标.
(1)由y=x+1可得A(0,1),即OA=1,
∵tan∠AHO=
∴OH=2,
∵MH⊥x轴,
∴点M的横坐标为2,
∵点M在直线y=x+1上,
∴点M的纵坐标为3,即M(2,3),
∵点M在上,
∴k=2×3=6;
(2)∵点N(1,a)在反比例函数的图象上,
∴a=6,即点N的坐标为(1,6),
过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),

此时PM+PN最小,
∵N与N1关于y轴的对称,N点坐标为(1,6),
∴N1的坐标为(-1,6),
设直线MN1的解析式为y=kx+b,
把M,N1的坐标得

解得:

∴直线MN1的解析式为y=-x+5,
令x=0,得y=5,
∴P点坐标为(0,5).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知反比例函数的图像经过A(-2,3),则当时,y的值是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

函数的图象关于y轴对称,我们定义函数相互为“影像”函数。
类似地,如果函数的图象关于y轴对称,那么我们定义函数互为“影像”函数。
(1)请写出函数的“影像”函数:   
(2)函数     的“影像”函数是
(3)如果,一条直线与一对“影像”函数的图象分别交于点A、B、C(点A、B在第一象限),如果CB: BA=1:2,点C在函数的“影像”函数上的对应点的横坐标是1,求点B的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,直线y=2x+4与轴、轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿轴正方向平移个单位长度后,点C恰好落在此双曲线上,则的值是(     ).
A.1       B.2      C.3        D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数的图像经过点P(2,-1),则它的解析式为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列函数中,y是x的反比例函数的是(  )
A.y=
1
x2
B.xy=4C.y=
1
x+1
D.y=
5
x
+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A在双曲线的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在函数y=-的图象上有三个点为(x1,y1)、(x2,y2)、(x3,y3),若y1<0<y2<y3,则x1,x2,x3的大小关系是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y= (k≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.

(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.

查看答案和解析>>

同步练习册答案