精英家教网 > 初中数学 > 题目详情
画图,将图中的△ABC作下列运动,画出相应的图形.
(1)沿y轴正向平移2个单位;
(2)关于y轴对称;
(3)以B点为位似中心,放大到2倍.
分析:(1)把三角形的每个顶点向上移动两个单位长度,然后连接得到的三个点即可;
(2)作出三角形的每个顶点关于y轴的对称点,然后连接得到的三个点即可;
(3)把BC延长到C′,使CC′=BC,则C′就是C的对应点,然后得到B的对应点,即可得到所求的三角形.
解答:解:作图如下:
点评:本题考查了画位似图形及画三角形的内心.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、画图题:
(1)如图:△ABC绕O点旋转后,顶点B的对应点为E,试确定顶点A、C旋转后对应点位置,以及旋转后的三角形位置
(2)△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD将开成为两个三角形,在平面上把这两个三角形拼成一个四边形,请你画出所有不同形状的四边形的示意图(标出图中的直角)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.
这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.

【研究速算】
提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.
(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果

【研究方程】
提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?
几何建模:
(1)变形:x(x+2)=35.
(2)画四个长为x+2,宽为x的矩形,构造图4
(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)
【研究不等关系】
提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?
几何建模:
(1)画长y+3,宽y+2的矩形,按图5方式分割
(2)变形:2y+5=(y+3)+(y+2)
(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
归纳提炼:
当a>2,b>2时,表示ab与a+b的大小关系.
根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)

查看答案和解析>>

科目:初中数学 来源: 题型:

将图中的△ABC作如下运动. 
(1)沿x轴向左平移2个单位,得到△A′B′C′,不画图直接写出发生变化后的三个顶点的坐标.
(2)以A点为位似中心放大到原来2倍,得到△AB″C″.画出图形并写出发生变化后的三个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

画图题:
(1)如图:△ABC绕O点旋转后,顶点B的对应点为E,试确定顶点A、C旋转后对应点位置,以及旋转后的三角形位置
(2)△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD将开成为两个三角形,在平面上把这两个三角形拼成一个四边形,请你画出所有不同形状的四边形的示意图(标出图中的直角)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

将图中的△ABC作如下运动.
(1)沿x轴向左平移2个单位,得到△A′B′C′,不画图直接写出发生变化后的三个顶点的坐标.
(2)以A点为位似中心放大到原来2倍,得到△AB″C″.画出图形并写出发生变化后的三个顶点的坐标.

查看答案和解析>>

同步练习册答案