【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(﹣4,0)、B(﹣l,0)两点,与y轴交于点C,点D是第三象限的抛物线上一动点.
(1)求抛物线的解析式;
(2)设点D的横坐标为m,△ACD的面积为量求出S与m的函数关系式,并确定m为何值时S有最大值,最大值是多少?
(3)若点P是抛物线对称轴上一点,是否存在点P使得∠APC=90°?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)y=x2+x+3;(2)m为﹣2时S有最大值,最大值是6(3)P的坐标为(﹣, )或(﹣, )
【解析】试题分析:(1)、将点A和点B的坐标代入解析式,利用待定系数法求出函数解析式;(2)、首先求出点C的坐标,然后利用待定系数法求出直线AC的函数解析式,过点D D作DE∥y轴,交AC于点E,设出点D和点E的坐标,然后求出DE的长度,根据面积的计算公式得出面积的二次函数解析式,从而得出面积的最大值;(3)、以AC为直径作圆交抛物线的对称轴于P,根据点A 和点C的坐标得出中点的坐标,求出AC和OP的长度,设点P的坐标为(,y),然后根据勾股定理求出y的值,得出点P的坐标.
试题解析:(1)、将A(﹣4,0)、B(﹣l,0)代入y=ax2+bx+3得:,
解得, 故抛物线的函数解析式为y=x2+x+3;
(2)、令x=0,则y=3, ∴C(0,3),
设直线AC的解析式为y=mx+n, 代入A(﹣4,0)、C(0,3)得, 解得
∴AC的解析式为y=x+3;
过D作DE∥y轴,交AC于点E,设D(m, m2+m+3),E(m, m+3)(﹣4<m<﹣1), 则DE=m+3﹣(m2+m+3), ∴DE=﹣m2﹣3m,
∴S=DE×4=2(﹣m2﹣3m)=﹣m2﹣6m=﹣(m+2)2+6,
∴m=﹣2时,S最大=6; 故m为﹣2时S有最大值,最大值是6.
(3)、存在点P使得∠APC=90°, 以AC为直径作圆交抛物线的对称轴于P,
∵A(﹣4,0)、C(0,3), ∴AC的中点O的坐标为(﹣2,),AC==5,
∴OP==, ∵抛物线y=ax2+bx+3与x轴交于A(﹣4,0)、B(﹣l,0)两点,
∴对称轴x==﹣, 设P(﹣,y), ∴OP2=()2,
即(﹣2+)2+(﹣y)2=()2, 解得y=±,
∴P的坐标为(﹣,)或(﹣,).
科目:初中数学 来源: 题型:
【题目】如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O直径,CD为⊙O的切线,C为切点,过A作CD的垂线,垂足为D.
(1)求证:AC平分∠BAD;
(2)若⊙O半径为5,CD=4,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB,标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,
①求菱形的边长;
②求折痕EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,设点P的横坐标为t;
①当S△ACP=S△ACN时,求点P的坐标;
②是否存在点P,使得△ACP是以AC为斜边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,请直接写出点E的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2-3与y2=(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com