精英家教网 > 初中数学 > 题目详情
已知关于x的方程
(1)求证:无论k取什么实数值,方程总有实数根.
(2)若等腰△ABC的一边长a=1,另两边长b,c恰好是这个方程的两个实数根,求△ABC的周长?(9分)
【答案】分析:(1)先计算△,化简得到△=(2k-3)2,易得△≥0,然后根据△的意义即可得到结论;
(2)利用求根公式计算出方程的两根x1=2k-1,x2=2,则可设b=2k-1,c=2,然后讨论:当a、b为腰;当b、c为腰,
分别求出边长,但要满足三角形三边的关系,最后计算周长.
解答:(1)证明:△=(2k+1)2-4×1×4(k-
=4k2-12k+9
=(2k-3)2
∵无论k取什么实数值,(2k-3)2≥0,
∴△≥0,
所以无论k取什么实数值,方程总有实数根;
(2)∵x=
∴x1=2k-1,x2=2,
∵b,c恰好是这个方程的两个实数根,设b=2k-1,c=2,
当a、b为腰,则a=b=1,而a+b=c,所以这种情况不成立,
当b、c为腰,则2k-1=2,解得k=
此时三角形的周长=2+2+1=5.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并直接写出以这两根为直角边的直角三角形外接圆半径的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程m(x-1)=4x-m的解是-4,求m2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程4x-3m=2的解是x=m,则m=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程|x|=ax-a有正根且没有负根,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程3x2-4x•sinα+2(1-cosα)=0有两个不相等的实数根,α为锐角,那么α的取值范围是
 

查看答案和解析>>

同步练习册答案