【题目】如图,要用篱笆(虚线部分)成一个矩形苗圃,其中两边靠的墙足够长,中间用平行于的篱笆隔开,已知篱笆的总长度为18米,设矩形苗圃的一边的长为,矩形苗圃面积为.
(1)求与的函数关系式;
(2)求所围矩形苗圃的面积最大值;
(3)当所围矩形苗圃的面积为时,则的长为多少米?
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.
根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出
(1)如图1,的边BC在直线n上,过顶点A作直线m∥n,在直线m上任取一点D连接BD,CD,则的面积_______的面积(填“等于”大于”或“小于”)
问题探究
(2)如图2,在菱形ABCD和菱形BGFE中,,求的面积.
问题解决
(3)如图3在矩形ABCD中,,在矩形ABCD内(可以在边上)存在点P,使得的面积等于矩形ABCD的面积的,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中,以BC为弦的⊙O分别与AB,AC交于点D和E,点F是BC延长线上一点,CF=AE,连接EF.
(1)如图1,BC为直径,求证:EF是⊙O的切线;
(2)如图2,EF与⊙O交于点G,⊙O的半径为1,BC的长为π,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 RtABC和 RtBED 的边长,已知,这时我们把关于 x 的形如二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于 x 的“勾系一元二次方程”,必有实数根;
(3)若 x 1是“勾系一元二次方程” 的一个根,且四边形 ACDE 的周长是6,求ABC 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有( )个.
A. 3B. 4C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点0 为Rt△ABC斜边AB上的一点,以OA 为半径的☉O与BC切于点D,与AC 交于点E,连接AD.
(1) 求证: AD平分∠BAC;
(2)若∠BAC= 60°,OA=4,求阴影部分的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数图象的顶点在原点O,且过点(1,1),点F(0,)在y轴上,直线与y轴交于点H,
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线交于点M,求证:FM平分∠OFP;
(3)当点P横坐标为时,过O点作OQ⊥OP交抛物线于点Q,在y轴上找点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com