精英家教网 > 初中数学 > 题目详情
1.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 过E作EH⊥CF于H,由折叠的性质得BE=EF,∠BEA=∠FEA,由点E是BC的中点,得到CE=BE,得到△EFC是等腰三角形,根据等腰三角形的性质得到∠FEH=∠CEH,推出△ABE∽△EHC,求得EH=$\frac{24}{5}$,结果可求sin∠ECF=$\frac{EH}{CE}$=$\frac{4}{5}$.

解答 解:过E作EH⊥CF于H,
由折叠的性质得:BE=EF,∠BEA=∠FEA,
∵点E是BC的中点,
∴CE=BE,
∴EF=CE,
∴∠FEH=∠CEH,
∴∠AEB+∠CEH=90°,
在矩形ABCD中,
∵∠B=90°,
∴∠BAE+∠BEA=90°,
∴∠BAE=∠CEH,∠B=∠EHC,
∴△ABE∽△EHC,
∴$\frac{AB}{EH}=\frac{AE}{CE}$,
∵AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=10,
∴EH=$\frac{24}{5}$,
∴sin∠ECF=sin∠ECH=$\frac{EH}{CE}=\frac{\frac{24}{5}}{6}$=$\frac{4}{5}$,
故选D.

点评 本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,PD=10,则PE的长度为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,Rt△AOB中,∠AOB=90°,OA=10,点B在反比例函数y=$\frac{12}{x}$图象上,且点B的横坐标为3.
(1)求OB的长;
(2)求过点A的双曲线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③$\widehat{BD}$=$\widehat{AD}$;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是(  )
A.①②B.①②③C.①④D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:
(1)九年(1)班有50名学生;
(2)补全直方图;
(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;
(4)求该年级每天阅读时间不少于1小时的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是(  )
A.π-2B.π-4C.4π-2D.4π-4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.用火柴棒按下列方式搭建三角形:

(1)填表:
三角形个数12345
火柴棒根数357911
(2)当三角形的个数为n时,火柴棒的根数是多少?(用含n的式子表示)
(3)求当n=100时,火柴棒的根数是多少?
(4)当火柴棒的根数为2013时,三角形的个数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.化简$\frac{{a}^{3}}{a}$=a2

查看答案和解析>>

同步练习册答案