【题目】大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进该款衬衣,进货量比第一批增加了20%,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了6000元
(1)第一批衬衣进货时价格是多少?
(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?(提示:利润=售价﹣成本,利润率=利润÷成本×100%)
【答案】(1)80;(2)150.
【解析】
(1)设第一批衬衣进货时价格是x元/件,则第二批衬衣进货时价格是(x+20)元/件,根据数量=总价÷单价结合第二批进货量比第一批增加了20%,即可得出关于x的分式方程,解之即可得出结论;
(2)第二批衬衣每件售价是m元,根据第二批衬衣的利润率不低于第一批衬衣的利润率,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中的最小值即可得出结论.
解:(1)设第一批衬衣进货时价格是x元/件,则第二批衬衣进货时价格是(x+20)元/件,
依题意,得: ,
解得:x=80,
经检验,x=80是原方程的解,且符合题意.
答:第一批衬衣进货时价格是80元/件.
(2)由(1)可知:第二批衬衣的进价为100元.
设第二批衬衣每件售价是m元,
依题意,得: ,
解得:m≥150.
答:第二批衬衣每件售价至少是150元.
科目:初中数学 来源: 题型:
【题目】合肥合家福超市为了吸引顾客,设计了一种促销活动:在三等分的转盘上依次标有“合”,“家”,“福”字样,购物每满200元可以转动转盘1次,转盘停下后,指针所指区域是“福”时,便可得到30元购物券(指针落在分界线上不计次数,可重新转动一次),一个顾客刚好消费400元,并参加促销活动,转了2次转盘.
(1)求出该顾客可能获得购物券的最高金额和最低金额;
(2)请用画树状图法或列表法求出该顾客获购物券金额不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a﹣1)x2+(2﹣3a)x+3=0.
(1)直线l:y=mx+n交x轴于点A,交y轴于点B,其中m,n(m<n)是此方程的两根,并且=.坐标原点O关于直线l的对称点O′在反比例函数y=的图象上,求反比例函数y=的解析式;
(2)在(1)成立的条件下,将直线l绕点A逆时针旋转角θ(00<θ<450),得到直线l′,l′交y轴于点P,过点P作x轴的平行线,与上述反比例函数y=的图象交于点Q,当四边形APQO′的面积为9﹣时,求θ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=10,BC=16.点D在边BC上,且点D到边AB和边AC的距离相等.
(1)用直尺和圆规作出点D(不写作法,保留作图痕迹,在图上标注出点D);
(2)求点D到边AB的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠BAC=30°,点A的坐标为(﹣3,0),将△ABC沿直线AC翻折,点B的对应点D恰好落在反比例函数的图象上,则k的值为( )
A. 2B. ﹣2C. 4D. ﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为( )
A. (8076,0)B. (8064,0)C. (8076,)D. (8064,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D作DE∥BC交AC于E,则线段BD与CE有何数量关系?
拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.
问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC所在的直线垂直时BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC平移的时间为t(s)(0<t<6).
(1)等边△ABC的边长为 ;
(2)在运动过程中,当 时,MN垂直平分AB;
(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.
①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com