精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2-(2k+3)x+k2+3k+2=0
①求证:不论k为何值,此方程总有两个不相等的实数根;
②若△ABC中,AB、AC的长是已知方程的两个实数根,第三边BC的长为5.问:k为何值时,△ABC是直角三角形?
(1)证明:△=(2k+3)2-4(k2+3k+2)
=1,
∵△>0,
∴不论k为何值,此方程总有两个不相等的实数根;
(2)x2-(2k+3)x+k2+3k+2=0的解为x=
2k+3±1
2

∴x1=k+2,x2=k+1,
设AB=k+2,AC=k+1,
当AB2+AC2=BC2,即(k+2)2+(k+1)2=52,解得k1=-5,k2=2,由于AB=k+2>0,AC=k+1>0,所以k=2;
当AB2+BC2=AC2,即(k+2)2+52=(k+1)2,解得k=-14,由于AB=k+2>0,AC=k+1>0,所以k=-14舍去;
当AC2+BC2=AB2,即(k+1)2+52=(k+2)2,解得k=11,由于AB=k+2=13,AC=12,所以k=11,
∴k为2或11时,△ABC是直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案