精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).

(1)若M(﹣2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.

解:(1)(0,2)。
(2)∵N(0,2)在抛物线上,∴k=2。

∴抛物线的解析式为
(3)∵
∴B(,0)、A(0,2)、E(,1)。
∵CO:OF=2:
∴CO=﹣m,FO=m,
,∴
整理得:m2+m=0。∴m=﹣1或0 。
∵m<0,∴m=﹣1。
(4)在Rt△ABO中,
∴∠ABO=30°,AB=2AO=4
①当∠BPE>∠APE时,连接A1B,则对折后如图2,A1为对折后A的所落点,△EHP是重叠部分。

∵E为AB中点,∴SAEP=SBEP=SABP
∵SEHP=SABP,∴ =SEHP=SBHP=SABP
∴A1H=HP,EH=HB=1。∴四边形A1BPE为平行四边形。
∴BP=A1E=AE=2。
②当∠BPE=∠APE时,重叠部分面积为△ABP面积的一半,不符合题意。
③当∠BPE<∠APE时.则对折后如图3,A1为对折后A的所落点,△EHP是重叠部分。

∵E为AB中点,∴SAEP=SBEP=SABP
∵SEHP=SABP,∴SEBH=SEHP==SABP
∴BH=HP,EH=HA1=1。
又∵BE=EA=2,∴EHAP。∴AP=2。
在△APB中,∠ABP=30°,AB=4,AP=2,
∴∠APB=90°。∴BP=
综上所述,BP=2或

解析试题分析:(1)首先根据点M的移动方向和单位得到点N的平移方向和单位,然后按照平移方向和单位进行移动即可:
由于图形平移过程中,对应点的平移规律相同,
由点M到点M′可知,点的横坐标减5,纵坐标加3,
故点N′的坐标为(5﹣5,﹣1+3),即(0,2)。
(2)将点N的坐标代入函数的解析式即可求得k值。
(3)配方后确定点B、A、E的坐标,根据CO:OF=2:,用m表示出线段CO、FO和BF的长,利用得到关于m的方程,求得m的值即可。
(4)分当∠BPE<∠APE时、当∠BPE=∠APE时、当∠BPE<∠APE时三种情况分类讨论即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知函数是常数)
(1)若该函数的图像与轴只有一个交点,求的值;
(2)若点在某反比例函数的图像上,要使该反比例函数和二次函数都是的增大而增大,求应满足的条件以及的取值范围;
(3)设抛物线轴交于两点,且,在轴上,是否存在点P,使△ABP是直角三角形?若存在,求出点P及△ABP的面积;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).

(1)求抛物线的解析式及A,B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川南充8分)如图,二次函数y=x2+bx-3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).

(1)求这条抛物线的解析式;
(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).

(1)求抛物线的解析式,并求出点B坐标;
(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)
(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.

(1)求平移后的抛物线的解析式和点D的坐标;
(2)∠ACB和∠ABD是否相等?请证明你的结论;
(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线经过点A、B、C.

(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其坐标为t,
①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;
②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案