【题目】已知:在平面直角坐标系中,为坐标原点,直线分别交轴负半轴和轴正半轴于两点,将沿轴翻折至,且的面积为8.
(1)如图,求直线的解析式;
(2)如图,点为第二象限内上方的一点,连接,的面积为,求与的函数关系式(用含的代数式表示);
(3)如图,在(2)的条件下,连接与相交于点,点为轴负半轴上一点,,与相交于点,若,且,求点坐标.
【答案】(1);(2);(3)点坐标为(,).
【解析】
(1)由直线解析式得,翻折后得点,由此可得,根据的面积为8可求得,即可得到点,点,再利用待定系数法求得直线解析式即可;(2)过点P作PH⊥x轴于H,由即可求得与的函数关系式;(3)延长至,使得,设,易证;在上取一点使得,再证明,由全等三角形的性质可得,从而可证得,即可得,所以点横坐标为2.在中,设,则,由勾股定理可得 ,解得;由可得,即可得点坐标为,点;过点作于,于,可得 ,设点,可得 ,解得,代入中求得 ,即可求得点坐标为.
(1)解:由直线解析式得,
翻折后得点,
∴,
的面积为
解得
∴点,点
设直线解析式为
∴,,
∴解析式为
(2)过点作轴于,
,
∴;
(3)延长至,使得,
设,
∴,
∴,
∵,
∴,
∴,
∴,
∴可证;
在上取一点使得,
又∵,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
又∵,
∴,
∴点横坐标为2.
在中,
设,则,
,
,
解得;
又以上可得,
∴,
∴,
∴,
∴点坐标为,点;
过点作于,于,
,
设点,
,
∴,
解得,
代入中
∴点坐标为.
科目:初中数学 来源: 题型:
【题目】如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则的值为( )
A. 3 B. 4 C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.
小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 2.83 | 2.24 | 0 | |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;
(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队原计划修建一条长100千米的公路,由于实际情况,进行了两次改道,每次改道以相同的百分率增加修路长度,使得实际修建长度为121千米,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍。
(1)求两次改道的平均增长率;
(2)求甲、乙两个工程队每天各修路多少千米?
(3)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过42.4万元,甲工程队至少修路多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为
(1)求直线AB的函数表达式;
(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;
(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象经过点,点与点关于原点对称,一次函数的图象经过点,交反比例函数图象于点,连接.
(1)求反比例函数与一次函数的表达式;
(2)求的面积;
(3)直接写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.
(1)求证:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度数;
拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2-2x-1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com