精英家教网 > 初中数学 > 题目详情
阅读下列材料,并解答问题:
函数y=ax2+bx+c(a≠0)叫做二次函数,它的图象是抛物线,二次函数可以化成y=a(x-h)2+k的形式,则点(h,k)为抛物线的顶点坐标.
例:y=2x2+4x-1=2(x+1)2-3,则顶点坐标为(-1,-3).
运用上述方法,求抛物线y=-2x2-3x+4的顶点坐标.
∵y=-2x2-3x+4
=-2(x2+
3
2
x+
9
16
)+
41
8

=-2(x+
3
4
2+
41
8

∴顶点坐标为(-
3
4
41
8
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.

(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;
(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)把二次函数y=-
3
4
x2+
3
2
x+
9
4
代成y=a(x-h)2+k的形式;
(2)写出抛物线y=-
3
4
x2+
3
2
x+
9
4
的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的;
(3)如果抛物线y=-
3
4
x2+
3
2
x+
9
4
中,x的取值范围是0≤x≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境.(如喷水、掷物、投篮等)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-2x2+4x+6.
(1)求出该函数图象的顶点坐标,对称轴,图象与x轴、y轴的交点坐标,并在下面的坐标系中画出这个函数的大致图象;
(2)利用函数图象写出:当y>0时x的取值范围?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,下列结论:①9a-3b+c>0;②b<c;③3a+c>0,其中正确结论两个数有______个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
x2-x-
3
2

(1)求该抛物线的对称轴和顶点坐标;
(2)求抛物线与x轴交点的坐标;
(3)画出抛物线的示意图;
(4)根据图象回答:当x在什么范围时,y随x的增大而增大?当x在什么范围时,y随x的增大而减小?
(5)根据图象回答:当x为何值时,y>0;当x为何值时,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2+0.5x-3顶点坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

不论m取任何实数,抛物线y=a(x+m)2+m(a≠0)的顶点都(  )
A.在y=x直线上B.在直线y=-x上
C.在x轴上D.在y轴上

查看答案和解析>>

同步练习册答案