【题目】如图,△ABC中,点A(﹣2,1)、B(﹣3,4)C(﹣5,2)均在格点上.在所给直角坐标系中解答下列问题:
将△ABC平移得△A1B1C1使得点B的对应点B1与原点O重合,在所给直角坐标系中画出图形;在图中画出△ABC关于y轴对称的△A2B2C2 , 并写出A2、B2、C2的坐标;在x轴上找一点P,使得△PAB2的周长最小,请直接写出点P的坐标.
科目:初中数学 来源: 题型:
【题目】如图,线段 AB=24,动点 P 从 A 出发,以每秒 2 个单位的速度沿射线 AB运动,运动时间为 t 秒(t>0),M 为 AP 的中点.
(1)当点 P 在线段 AB 上运动时,
①当 t 为多少时,PB=2AM?②求2BM-BP的值.
(2)当 P 在 AB 延长线上运动时,N 为 BP 的中点,说明线段 MN 的长度不变,并 求出其值.
(3)在 P 点的运动过程中,是否存在这样的 t 的值,使 M、N、B 三点中的一个点 是以其余两点为端点的线段的中点,若有,请求出 t 的值;若没有,请说明理 由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
(1)现随机转动转盘一次,停止后,指针指向2的概率为 .
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
游戏规则:随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线与轴交于点(0,6).
(1)求;
(2)求该抛物线的顶点坐标,并画出该抛物线的大致图像;
(3)试探索:在该抛物线上是否存在点P,使得以点P为圆心,以适当长为半径的⊙P与两坐标轴的正半轴都相切?如果存在,请求出点P的坐标和⊙P的半径;如果不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线与轴交于A,B(点A在点B的右边),与轴交于点C.过A,C两点作直线,P是抛物线上的动点,过P作PD⊥轴,垂足为D,交直线于点E.设点P的横坐标为.
(1)求直线的函数表达式;
(2)问是否存在点P,使O,E,C,P四点能构成平行四边形,若存在,请求出的值;若不存在,请说明理由.
(3)如图2,过A点作直线⊥,连接OE,作△AOE的外接圆,交直线于点F,连接OF,EF.当△EOF的面积最小时,求点P的坐标和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com