精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,对于平面内任一点(m,n), 规定以下两种变换:
⑴f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
⑵g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).
按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(2,﹣3)]=

【答案】(﹣2,﹣3)
【解析】解:g[f(2,﹣3)]=g(2,3)=(﹣2,﹣3), 所以答案是:(﹣2,﹣3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数.

(1)指出函数图象的开口方向是 ,对称轴是 ,顶点坐标为

(2)x 时,yx的增大而减小;

(3)怎样移动抛物线就可以得到抛物线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数(x0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).

(1)求反比例函数的表达式;

(2)求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y= (x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)连接OC,若BD=BC,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.

(1)求反比例函数和一次函数的解析式;

(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,点P为∠MON的平分线上一点,以P点为顶点的角的两边分别与射线OMON交于AB两点,如果∠APB绕点P旋转时始终满足OA·OBOP2,我们就把∠APB叫作∠MON的智慧角.

(1)如图②,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OMON交于AB两点,且∠APB=135°,求证:∠APB是∠MON的智慧角;

(2)如图①,已知∠MONα(0°<α<90°),OP=2,若∠APB是∠MON的智慧角,连接AB,用含α的式子分别表示∠APB的度数和△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBC,点E是边AD的中点,连接BE并延长交CD的延长线于点F,交AC于点G.

(1)FD2 ,求线段DC的长;

(2)求证:EF·GBBF·GE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=2,A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为(  )

A. 1 B. C. 2 D. +1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点M(2,﹣3)关于y轴对称的点的坐标为( )

A. (3,2) B. (3,﹣2) C. (﹣2,﹣3) D. (﹣3,2)

查看答案和解析>>

同步练习册答案