【题目】如图,梯形ABCD中,AD∥BC,AE⊥BC于点E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
(1)求证:CD与⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
(2)连接OF,依据垂径定理可知BE=EF=12,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
试题解析:
(1)证明:
过点O作OG⊥DC,垂足为G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中
,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切线.
(2)如图所示:连接OF.
∵OA⊥BC,
∴BE=EF= BF=12.
在Rt△OEF中,OE=5,EF=12,
∴OF=,
∴AE=OA+OE=13+5=18.
∴tan∠ABC=.
科目:初中数学 来源: 题型:
【题目】四边形ABCD坐标为A(0,0),B(0,3),C(3,5),D(5,0).
(1)请在平面直角坐标系中画出四边形ABCD;
(2)把四边形ABCD先向上平移2个单位,再向左平移3个单位得到四边形,求平移后各顶点的坐标;
(3)求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1.
(2)作出△ABC关于原点O成中心对称的△A1B2C2.
(3)请直接写出以A1、B2、C2为顶点的平行四边形的第四个顶点D的坐标________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P,若PA= 6cm,求AC的长.
四、综合题(10分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.
(1)求证:四边形BCED是平行四边形;
(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
⑴ 作出△绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.
(2)请直接写出以A1、B2、C2为顶点的平行四边形的第四个顶点D的坐标 .(写出一个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角形的直角顶点0按图1方式叠放在一起(其中∠C=30°,∠CDO=60°;∠OAB=∠OBA=45°).△COD绕着点O顺时针旋转一周,旋转的速度为每秒10°,若旋转时间为t秒,请回答下列问题:(请直接写出答案)
(1)当0<t<9时(如图2),∠BOC与∠AOD有何数量关系
(2)当t为何值时,边OA∥CD?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com