精英家教网 > 初中数学 > 题目详情
17、如图,在△ABD中,C是BD上的一点,且AC⊥BD,AC=BC=CD.
(1)求证:△ABD是等腰三角形;
(2)求∠BAD的度数.
分析:(1)根据已知利用SAS判定△ACB≌△ACD,从而得到AB=AD,即△ABD是等腰三角形;
(2)由已知可得到△ACB、△ACD都是等腰直角三角形,即∠B=∠D=45°,从而求得∠BAD=90°.
解答:解:(1)∵AC⊥BD,AC=BC=CD,
∴∠ACB=∠ACD=90°.
∴△ACB≌△ACD.
∴AB=AD.
∴△ABD是等腰三角形.

(2)∵AC⊥BD,AC=BC=CD,
∴△ACB、△ACD都是等腰直角三角形.
∴∠B=∠D=45°.
∴∠BAD=90°.
点评:此题主要考查学生对等腰三角形的判定方法的理解及运用;发现并利用△ACB、△ACD都是等腰直角三角形是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,精英家教网连接BC.
(1)求证:四边形ABCD是菱形;
(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2-7x+12=0的两根,求AB的长以及菱形ABCD的面积;
(3)若动点M从A出发,沿AC以2m/S的速度匀速直线运动到点C,动点N从B出发,沿BD以1m/S的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为
14
m2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为3.5,则△ABC的面积为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABD中,∠B=90°,C是BD上一点,DC=10,∠ADB=45°,∠ACB=60°,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•溧水县一模)如图,在△ABD中,∠A=∠B=30°,以AB边上一点O为圆心,过A,D两点作⊙O交AB于C.
(1)判断直线BD与⊙O的位置关系,并说明理由;
(2)连接CD,若CD=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABD中,∠ABC=45゜,AC、BF为高,AC、BF相交于E点.
(1)求证:BE=AD; 
(2)过C点作CM∥AB交AD于M点,连EM,求证:BE=AM+EM.

查看答案和解析>>

同步练习册答案