分析 首先根据角平分线的定义,可得:∠1=$\frac{1}{2}$∠ABD,∠2=$\frac{1}{2}$∠BDC,然后根据等量代换,求出∠ABD+∠BDC=180°,即可判断出AB∥CD.
解答 证明:直线AB、CD的位置关系为:AB∥CD,理由如下:
∵BE是∠ABD的平分线,DE是∠BDC的平分线,
∴∠1=$\frac{1}{2}$∠ABD,∠2=$\frac{1}{2}$∠BDC.
∵∠1+∠2=90°,
∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,
∴AB∥CD.
点评 此题主要考查了平行线的判定,解答此题的关键是熟练掌握角平分线定义和平行线的判定方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com