分析 (1)过P作PQ∥AB,推出AB∥PQ∥CD,根据平行线性质得出∠BPQ=∠B,∠D=∠DPQ,求出即可;
(2)过P作PQ∥AB,推出AB∥PQ∥CD,根据平行线性质得出∠BPQ=∠B,∠D=∠DPQ,求出即可.
解答 解:∵过点P作PE∥AB,
则PE∥CD,
∴∠B+∠BPE=∠D+∠DPE=180°,
∴∠ABP+∠CDP+∠BPD=360°,
故答案为:360;
(2)∠ABP+∠CDP=∠BPD;
证明:如图②,过P作PQ∥AB,
∵AB∥CD,
∴AB∥PQ∥CD,
∴∠B=∠1,∠D=∠2,
∴∠BPD=∠1+∠2=∠B+∠D;
(3)不成立,关系式是:∠B-∠D=∠BPD,或∠D-∠B=∠BPD,
理由:如图4,过P作PQ∥AB,
∵AB∥CD,
∴AB∥PQ∥CD,
∴∠BPQ=∠B,∠D=∠DPQ,
∴∠B-∠D=∠BPQ-∠DPQ=∠BPD,
∠BPQ=∠B-∠D.
如图5,同理∠D-∠B=∠BPD.
点评 本题考查了平行线性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 线段EF的长先减小后增大 | B. | 线段EF的长逐渐减小 | ||
C. | 线段EF的长不变 | D. | 线段EF的长逐渐增大 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com