精英家教网 > 初中数学 > 题目详情

【题目】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是(
A.70°
B.65°
C.60°
D.55°

【答案】B
【解析】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C, ∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CAA′=45°,
∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
由旋转的性质得∠B=∠A′B′C=65°.
故选:B.
根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.
(1)请写出这种做法的理由;
(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;
(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB、B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1、C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=2B1C1,C2A1=2C1A1 ,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,经过2015次操作后△A2015B2015C2015的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1 , S2 , 则|S1﹣S2|=(平方单位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某公司有三个住宅区可看作一点,A,B,C各区分别住有职工30人、15人、10,且这三个住宅区在一条大道上(A,B,C三点共线),已知AB=100,BC=200.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在(  )

A. A B. B

C. A,B之间 D. B,C之间

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人驾车从乡村进城.各时间段的行驶速度如图所示.当时,其行驶路程与时间之间的函数表达式是________,当时,其行驶路程与时间之间的函数表达式是________,当时,其行驶路程与时间之间的函数表达式是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数 (k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=

(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若SDEC=9,则SBCF=(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,解答问题:

例题:已知二次三项式x24xm有一个因式是(x3),求另一个因式以及m的值。

解:设另一个因式为(xn),得 x24xm=(x3)(xn

x24xmx2+(n3x3n

解得:n=-7 m=-21 另一个因式为(x7),m的值为-21

问题:仿照以上方法解答下面问题:

已知二次三项式2x23xk有一个因式是(2x5),求另一个因式以及k的值。

查看答案和解析>>

同步练习册答案