分析 连接CD,根据ASA证明△AED≌△CGD,得到DE=DG,∠AED=∠FGD,再根据SAS证明△DFE≌△DFG,得到∠FED=∠FGD,即可证明∠FED=∠AED.
解答 证明:连接CD,
∵AC=BC,∠C=90°,点D为AB的中点,
∴AD=CD=BD,∠A=∠DCG=∠ACD=∠B=45°,∠CDA=∠CDB=90°,
∵DG⊥DE,
∴∠EDG=90°,
∴∠ADE=∠CDG,
在△AED和△CGD中,
$\left\{\begin{array}{l}{∠A=∠DCG}\\{AD=CD}\\{∠ADE=∠CDG}\end{array}\right.$,
∴△AED≌△CGD(ASA),
∴DE=DG,∠AED=∠FGD,
∵∠EDG平分线DF交BC于F,
∴∠EDF=∠GDF,
在△DFE和△DFG中,
$\left\{\begin{array}{l}{DE=DG}\\{∠EDF=∠GDF}\\{DF=DF}\end{array}\right.$,
∴△DFE≌△DFG(SAS),
∴∠FED=∠FGD,
∴∠FED=∠AED.
点评 本题主要考查了全等三角形的判定与性质和等腰直角三角形的性质,熟练地掌握全等三角形的判定方法和等腰直角三角形的性质是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
a | b | c | △ABC是否为直角三角形 |
4 | 3 | 5 | 是 |
6 | 8 | 10 | 是 |
8 | 15 | 17 | 是 |
10 | 24 | 26 | 是 |
12 | 35 | 37 | 是 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com