某公园在一个扇形OEF草坪上的圆心O处垂直于草坪的地上竖一根柱子OA,在A处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高
m,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D点的水平距离4米处达到最高点B,点B距离地面2米.当喷头A旋转120°时,这个草坪可以全被水覆盖.如图1所示.
(1)建立适当的坐标系,使A点的坐标为(O,
),水流的最高点B的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;
(2)求喷水装置能喷灌的草坪的面积(结果用π表示);
(3)在扇形OEF的一块三角形区域地块△OEF中,现要建造一个矩形GHMN花坛,如图2的设计方案是使H、G分别在OF、OE上,MN在EF上.设MN=2x,当x取何值时,矩形GHMN花坛的面积最大?最大面积是多少?