精英家教网 > 初中数学 > 题目详情
14.(1)如图1,在四边形ADBC中,∠ACB=∠ADB=90°,将△BCD绕点D逆时针旋转90°,则点B恰好落在点A处,得到旋转后的△AED,则AC、BC、CD满足的数量关系式是AC+BC=$\sqrt{2}$CD.
(2)如图2,AB是⊙O的直径,点C、D在⊙O上,且$\widehat{AD}$=$\widehat{BD}$,若AB=13,BC=12,求CD的长.
(3)如图3,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示).

分析 (1)先判断出E、A、C三点共线,再用旋转的性质得出△CDE是等腰直角三角形,代换即可得出结论;
(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;
(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,由(2)问题可知:AC+BC=$\sqrt{2}$CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;

解答 解:(1)将△BCD绕点D,逆时针旋转90°到△AED处,
∴∠EAD=∠DBC,
∵∠DBC+∠DAC=180°,
∴∠EAD+∠DAC=180°,
∴E、A、C三点共线,
∴∠CAE为平角,
由旋转知,AE=BC,DE=CD,∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CE=$\sqrt{2}$CD,
∵CE=AE+AC=BC+AC,
∴AC+BC=$\sqrt{2}$CD,
故答案为:AC+BC=$\sqrt{2}$CD;

(2)连接AC、BD、AD,
∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
∵$\widehat{AD}$=$\widehat{BD}$,
∴AD=BD,
将△BCD绕点D,顺时针旋转90°到△AED处,如图③,
∴∠EAD=∠DBC,
∵∠DBC+∠DAC=180°,
∴∠EAD+∠DAC=180°,
∴E、A、C三点共线,
∵AB=13,BC=12,
∴由勾股定理可求得:AC=5,
∵BC=AE,
∴CE=AE+AC=17,
∵∠EDA=∠CDB,
∴∠EDA+∠ADC=∠CDB+∠ADC,
即∠EDC=∠ADB=90°,
∵CD=ED,
∴△EDC是等腰直角三角形,
∴CE=$\sqrt{2}$CD,
∴CD=$\frac{17\sqrt{2}}{2}$;

(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1
连接D1A,D1B,D1C,如图④
由(2)的证明过程可知:AC+BC=$\sqrt{2}$D1C,
∴D1C=$\frac{\sqrt{2}(m+n)}{2}$,
又∵D1D是⊙O的直径,
∴∠DCD1=90°,
∵AC=m,BC=n,
∴由勾股定理可求得:AB2=m2+n2
∴D1D2=AB2=m2+n2
∵D1C2+CD2=D1D2
∴CD=m2+n2-$\frac{(m+n)^{2}}{2}$=$\frac{(m-n)^{2}}{2}$,
∵m<n,
∴CD=$\frac{\sqrt{2}(m+n)}{2}$;

点评 此题圆的综合题,主要考查了勾股定理、等腰直角三角形的判断和性质,圆周角定理,旋转的性质等知识点,解本题的关键是就利用得出的结论来进行解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.某一出租车一天下午以鼓楼为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:-3,-5,+4,-8,+6,-3,-6,-4,+9.
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机这段时间的营业额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)计算:(7x2y3-8x3y2z)÷8x2y2
(2)分解因式:(x2-1)2-6(x2-1)+9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程组:
(1)$\left\{\begin{array}{l}{5x+2y=25①}\\{3x+4y=15②}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+y+z=1}\\{x-2y-z=3}\\{2x-y+z=0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.若$\root{3}{3y-1}$与$\root{3}{1-2x}$互为相反数,且x≠0,y≠0,求$\frac{x}{y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(-1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.
(Ⅰ)求抛物线的解析式和直线BC的解析式;
(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;
(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,水库大坝的横截面是梯形,坝顶宽5米,坝高20米,斜坡AB的坡比为1:2.5,斜坡CD的坡比为1:2,求大坝的截面面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,点P是等边三角形ABC内部一个动点,∠APB=120°,⊙O是△APB的外接圆.AP,BP的延长线分别交BC,AC于D,E.
(1)求证:CA,CB是⊙O的切线;
(2)已知AB=6,G在BC上,BG=2,当PG取得最小值时,求PG的长及∠BGP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如果一个多边形各内角之和为540度,那么这个多边形是五边形,这个多边形的外角和为360度.

查看答案和解析>>

同步练习册答案