精英家教网 > 初中数学 > 题目详情
10、在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F=
40
度.
分析:先两次运用等腰三角形的性质得出∠ACB=∠EDB,从而AC∥EF在得出平行四边形,即易得.
解答:解:∵AB=AC,∠B=70°
∴∠B=∠ACB=70°
∵BE=DE,∴∠EDB=∠B=70°
∴∠ACB=∠EDB∴AC∥EF,∵DF=DE∴EF=2DE
∵E是AB的中点∴AB=2BE,∴AB=EF∴EF=AC
∴四边形AEFC是平行四边形
∴AB∥FC
∴∠F=∠BED=180°-∠B-∠BDE=40°.
故答案为40.
点评:解决本题的关键是根据所给条件得到四边形AEFC是平行四边形,进而根据平行求得所求角的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案